Hányvariáció van? Ez nekem kicsit magas most tanulom?
az alábbi számok :1,2,3,4,5,6,7
összetesszük a számokat ugy hogy:
-minden egyjegy szám
-minden két jegyű szám
-minden három jegyű szám
....
-minden hétjegyű szám
(tehát ennyi számjegy szerepelhet)
hány féle képpen tehetjük össze a számjegyeket...
kikötés: egy szám egyszer szerepelhet
kis példa:1,2,3
ezek:
-1
-2
-3
-12
-13
-23
-123
tehát 7... ez hét számmal mennyi? van rá valami számítás?
> „-minden három jegyű szám”
> „kikötés: egy szám egyszer szerepelhet”
Akkor az kapásból nem minden háromjegyű szám.
> „kis példa:1,2,3
ezek: 1, 2, 3, 12, 13, 23, 123”
Akkor az is kikötés, hogy növekvő sorrendben kell írni a számokat?
A leírásod alapján sokféle lehet a kérdésed.
1, 2, 3, 4, 5, 6, 7 számjegyekkel:
n-jegyű számból 7^n darab képezhető;
legfeljebb 7-jegyű 7^1 + 7^2 + … + 7^7 = 7*(7^7 – 1)/6 darab van;
legfeljebb 7-jegyű, ha mindegyik legfeljebb 1-szer szerepelhet 7 + 7*6 + 7*6*5 + … + 7! = 7*(6*(5*(4*(3*(2*(1 + 1) + 1) + 1) + 1) + 1) + 1) darab van*;
legfeljebb 7-jegyű, ha növekvő sorrendben kell írni a számjegyeket és mindegyik legfeljebb egyszer szerepelhet pedig 2^7 – 1 darab van.
*Számológéppel egyszerű kiszámolni, a következő módon kell nyomni a gombokat: [2][+][1] [×] [3][+][1] [×] [4][+][1] … [×] [7] [=].
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!