Ez a matekpélda most akkor jó vagy nem?
3féle megoldást láttam rá,az én eredményeim a1=3/4 és a2= -4 ,de ebben az esetben meg nincs megoldása a feladatnak,ami túl szép lenne,szóval valamit elronthattam,de hiába számoltam újra,nem találtam hibát.
16 a^2 -8a -3=0 jött ki,ebből számoltam ki másodfokkal az a 1,2-t .
Az órán -4 a^2 + 14a +1 = 0 jött ki.Miért? :/ Valaki levezetné? :/
Szia!
én el akartam kezdeni, de nem tudom hogy pontosan hogy van a feladat. az ott sin(x) -1 vagy sin(x-1)
???ha visszaírsz talán tudok segíteni :)
Valamelyik este harmadik feladatnak már kiírtad ezt, de én "csak" az első kettőt oldottam meg. Most itt van a harmadik_
Ezt a változatot nálad még nem láttam....??
Köszönöm,de szerintem most már nem foglalkozom ezzel a feladattal,nekem így is még most 8 a^2 -3 =0 jött ki :/ A kapott feladatot köszönöm,csak valahogy nem értem,hogy hogyan maradt meg a nevező,órán is még én is felszoroztam minden taggal. Inkább haladok tovább a feladatokban,holnap lesz a doga :(
De lájkot küldök mindenkinek
2/(2sinx-1) + (2sinx -1) / 2sinx | sinx =a
2/(2a-1) + (2a-1)/2a
Ez az alapfelállás. közös nevezőre hozunk, keresztbe szorzunk a nevezőkkel:
2*2a /((2a-1)*2a) + ((2a-1)*(2a-1))/((2a-1)*2a = 5/2
összevonunk, szorzásokat elvégezzük:
(4a + 4a^2 -2a -2a +1)/((2a-1)*2a = 5/2
(4a^2+1)/(4a^2-2a) = 5/2
(felszorzunk a nevezővel mindkét oldalon, baloldalt eltűnik a tört)
4a^2+1 = 5*(4a^2-2a)/2
egyszerűsítések jobboldalt:
4a^2+1 = (20a^2-10a)/2
4a^2+1 = 10a^2-5a
-6a^2+5a+1=0
másodfokú megoldó:
a1,2 = (-5 +- gyök(25 - 4*1*(-6)))/( 2*(-6) )
= (-5 +- gyök(49) /(-12)
= (-5 +- 7) /(-12)
a1= -12/(-12) = 1 = a1
a2= 2/ (-12) = -1/6 = a2
Így talán már átlátható :D
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!