Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Mechanika. Valaki elmagyarázná...

Mechanika. Valaki elmagyarázná nekem, hogy miért kell egységvektor?

Figyelt kérdés

Ez a feladat: [link]


A pirossal bekeretezett részekre lennék kíváncsi, hogy, miért kell ez az egységvektor (e), mi a szerepe? Az rBF miért egyenlő 1-gyel?


2012. nov. 10. 18:55
 1/2 bongolo ***** válasza:

Az rBF nem 1! Nem az van odaírva a piros keretben! Az van ott, hogy az e vektor úgy számítható ki, hogy:

e = rBF / |rBF|

(Mindhárom fölött vonal van, vagyis vektorok.)


Ez a tört azt jelenti, hogy e egységvektor, aminek a hossza 1, az iránya pedig ugyanaz, mint rBF iránya. Ugyanis az abszolút érték eldobja a vektor irányát, csak a nagysága (hossza) marad meg. Ha pedig egy vektort elosztunk a saját hosszával, akkor 1 hosszúságú vektort kapunk, ami ugyanolyan irányú, mint az eredeti.


Na most ami a tört után ott van a piros keretben, az valójában ez:

1/|rBF| · rBF

vagyis rBF hosszának a reciproka szorozva rBF-fel. A reciprokból jön az 1, amit te rBF-nek néztél. De rBF igaziból a piros keretben a vége felé van ott: (−3i+6k)

√45 pedig rBF hossza: √(3²+6²) = √45


A piros keretbe írt dolgok egyébként szerintem hülye helyen vannak. Előtte kellett volna írni rBF értékét (az a kerettől jobbra van a papíron), valamint a hosszát is (az pedig a következő sorban van). Így tényleg nem lehet elsőre tudni, hogy hogyan jön ki az e vektor.


Az e egységvektor azért kellett nekik, mert rFH hosszát számolták csak ki először, és ezt szorozva e-vel jött ki az rFH vektor: ha egységvektorral szorzunk, akkor a méret nem változik, csak irányt kap.


Meg lehetne ezt a feladatot csinálni egységvektor nélkül is, kapásból rFH vektort számolni az rBF-ből azzal, hogy rFH = 0,5·rBF. Ekkor nem kellett volna hosszat se számolni. Nem ezt választották, pedig az sokkal egyszerűbb.

2012. nov. 10. 21:20
Hasznos számodra ez a válasz?
 2/2 A kérdező kommentje:
Köszönöm a hasznos választ. Így már sikerült megértenem.
2012. nov. 11. 14:06

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!