Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Egy kétjegyű szám számjegyeine...

Egy kétjegyű szám számjegyeinek összege 10. Ha a számjegyeket felcseréljük, az eredeti számnál 36-tal nagyobb számot kapunk. Mi volt az eredeti szám?

Figyelt kérdés
2012. márc. 5. 18:44
 1/3 bensdorp ***** válasza:
61%

x+y=10

y=10-x


10x+y+36=10y+x

10x+(10-x)+36=10(10-x)+x

10x+10-x+36=100-10x+x

9x+46=100-9x

18x=54

x=3


y=10-3=7

2012. márc. 5. 18:52
Hasznos számodra ez a válasz?
 2/3 anonim ***** válasza:
100%
Pontosan:D
2012. márc. 5. 21:58
Hasznos számodra ez a válasz?
 3/3 anonim ***** válasza:

Legyen

a, b - a két számjegy

a + b = 10

N = 10a + b - az eredeti szám

R = 10b + a - az eredeti fordítottja

A feladat szerint

R - N = 36


Ha egy számból kivonjuk a fordítottját, az eredmény 9-cel osztható szám lesz.

A példában

R - N = 9(b - a) = 36

vagyis

9(b - a) = 36

ebből

b - a = 4

A megadott feltétel szerint

b + a = 10


A kettőt összeadva

2b = 14

b = 7

====

a = 10 - b

a = 3

====

2012. márc. 6. 15:27
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!