A barbi9 kérdése:
X^3-2x^2+x=1/9 oldd meg az egyenletet?
Figyelt kérdés
2023. jan. 5. 21:36
2/6 anonim 



válasza:





Biztos, hogy ez az egyenlet? Mert ennek nincs racionális megoldása.
3/6 anonim 



válasza:





Na akkor nem csak en akadtam el az algebrai modszernel pl itt:
×(×-1)^2=1/9
4/6 anonim 



válasza:





#3, elég lett volna WolframAlphába beírni, hogy lássuk, csak irracionális megoldások vannak (és azok sem a „jobb fajtából”)...
De van harmadfokú megoldóképlet, azzal lehet számolni.
5/6 anonim 



válasza:





Valoban, igazad van. (3-as voltam).
6/6 Prokopf 



válasza:





#3
(y^3)-(y^1)=1/3
[x=y^2, azaz "y" négyzetgyök "x"-nek felel meg, és "x" eleve nem lehet "0"] a többi levezethető, valóban irracionális megoldásokat valószínűsít.
Gyanítom, hogy ez egy rejtett tesztkérdés (kb. Ábel-díjas nehézségű), ha ugyanis valaki kibontja, egy roppant érdekes állítást vehet észre, amely kísértetiesen hasonlít a Collatz tétel egyik összetettebb típusú bizonyításához...
És mivel tudjuk, hogy a matematika egy zárt logikai tér, így szükségszerűen nem lehetnek benne véletlenek.
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!