Fizika. Ki tudja legegyszerűbben elmagyarázni Einstein relativitás elméletét?
Gyenge az eszem előre szólok, ezért nem wiki vagy ilyesmi bemásolásra gondoltam. Arra gondoltam akinek ez jól fekszik az agyának, és nagyon tisztán át tudja látni, az arra is képes lehet, hogy úgy magyarázza el, hogy egy ilyen gyengébb képességű mint én is megértheti.
Persze már akinek van kedve hozzá.
Esetleg kort is írhattok kíváncsiságból. Köszönöm a fáradságot. Liza 22
(Utóirat, tudom hogy kettő van, de egyiket sem értem)
#23: A 100 évvel ezelőtti alatt egy 1919-es napfogyatkozást értettem, amikor is lehetőség nyílt a látszólag épp a Nap mellett lévő állócsillagok megfigyelésére - hisz az ezt a megfigyelést normál esetben a fénye miatz ellehetetlenítő Napot épp kitakarta a Hold. Az említett csillagok pozíciójának máshol kellett lennie, ha a Nap gravitációja nem hajlítja meg a teret, illetve máshol, ha meghajlítja. A megfigyelés Einsteint igazolta.
Azóta csillagászati (pontosabban asztrofizikai, kozmológiai) megfigyelések és kutatások során rutinszerűen használják ki a tér görbületének egyik következményét, amit gravitációs lencsézésnek hívnak. Illetve az általános relativitáselmélet szerint többek között a (nem egyenes mentén) gyorsuló tömeg fodrozódásszerű eltéréseket okoz a téridő geometriájában, amik a fény sebességével terjednek és amit gravitációs hullámoknak neveztek el. Ezeket pont pár éve sikerült kimutatni kísérletesen.
Ez igen ezt jól leírtad, (a husszút)
Bevallom alábecsültelek.
Egy mondatrész csak:(itt azt furcsálom hogy mondod minden között van tér, szerintem nem csak közötte van hanem minden maga is a térben van, mert a test a teret nem szorítja ki. Test tér nélkül nem is lehetne, a test a teret kitölti, de attól a tér ottmarad, nem lesz hézag benne. Szerintem. Vagy igen?
tér hajlása meghajlítja a benne lévő anyagot is: a bármilyen kiterjedt testeket alkotó ilyen-olyan részek között is van tér, pl egy fémrúdnál a fémrács rácspontjaiban ülő atomtörzsek között is, vagy a grafitceruzában a szénatomok között.
Nem csak a szénatomok között van tér, hanem a szénatom is a térben van. Ha azt feltételezzük hogy a tér valahol van valahol nincs, már lesüllyesszük valami ismert anyaggá.
Ne vegye kedved hogy belekötök, el akarom hinni az elméletet, eskü, de ha valamit elhiszek, nagyon elhiszem, ezért óvatosnak kell lennem, magam miatt is, meg sok kíváncsi fül fog megbízni bennem. Bevallom, még nem győztél meg, mégis egy lépéssel előrébb jutottunk.
Ha jól értem, arról szól a dolog, hogy Einstein leírt olyan képleteket, meg egyenleteket amikkel képesek vagyunk arra, hogy a világegyetemünkben kiszámoljunk mindenféle szöget meg távolságot? Vagy ezt nem értem.
Mit számolunk ki Einstein egyenleteivel? Szögek, távolságok? És azokat kiértékeljük? És mire jutunk?
És milyen adatokkal dolgozott Einstein. Csillagászati adatokkal? A csillagászok milyen adatokat adtak neki? Mi itt Einstein érdeme, és mi a más csillagászoké, akik mit csinálnak?
Jaja, igazad van a térrel, meg szénatomokkal kapcsolatban, én fogalmaztam rosszul.
(Ez egyébként továbbra sem érettségi anyag, szóval... :) )
Einstein egyenleteivel leginkább azt számoljuk, hogy hogyan mozognak különféle objektumok, illetve különféle megfigyelők hogyan látják és érzékelik ezeket. Pl a bolygók mozgásának pontos leírása sem lehetséges az általános relativitáselmélet nélkül (a Merkúr mozgását pl nem jól írta le a newtoni modell), de nagyobb léptékben pláne szükség van a relativitáselméletre. Szóval a kozmológia, asztrofizika, csillagászat az épít rá a számítások során.
De akár teljesen mindennapi dolgok is. Pl a speciális relativitáselmélet megjósolta, hogy különböző sebességű megfigyelők órája máshogy jár (ahogy már volt szó róla), az általános relativitáselmélet pedig még azt is, hogy különböző gravitációs mezőkben is különbözően járnak. Ha fellövünk egy műholdat, ami GPS navigációt biztosít itt a Földön, akkor mindkettő időeltéréssel pontosan tudni kell számolni, mert ott, a műholdnál már mind a sebesség, mind a gravitációs erő eltérése elég nagy ahhoz, hogy idővel használhatatlanul pontatlanná váljanak a GPS-eink, ha nem kalkulálunk vele. (Így ha bekapcsolsz egy google mapset, hogy megnézd hol vagy és merre kell menned, már be is bizonyítottad mindkét relativitáselmélet helyességét ebből a szempontból.)
Be kell valljam, igencsak sok éve annak, hogy a relativitáselmélettel foglalkoztam bármilyen formában, ami túlmutat egy kis fórumos magyarázáson, így nem akarok hülyeséget mondani neked a megszületésének részleteivel kapcsolatban, meg azzal kapcsolatban, hogy pontosan milyen adatokkal és hogyan is dolgozott Einstein.
Amennyit tudok, a speciális relativitáselmélet szimplán a fénysebesség állandóságából adódott. (A fénysebesség állandósága egy furcsább dolog, mint gondolnánk, és teljesen eltér a mindennapi tapasztalatainktól. A mindennapi tapasztalat szerint ha megy egy autó 50 km/órával és jön egy vele szemben 60-al, akkor egymáshoz képest 110-el mennek. A fénysebesség állandósága azt jelenti, hogy ha áll egy űrhajó, és egy vele szemben lévő fényforrás kibocsát egy fénysugarat, akkor az fénysebességgel érkezik meg az űrhajóhoz képest. De ha az űrhajó elindul a fényforrás felé a fénysebesség 90%-val, akkor nem 1,9-szeres fénysebességgel haladnak egymáshoz képest, hanem ugyanúgy fénysebességgel.)
Az általános relativitáselmélethez nagy inspiráció volt Riemann geometriája, ezen kívül az a felismerés, hogy a gravitációs erő megkülönböztethetetlen a gyorsulás okozta tehetetlenségi erőtől - tulajdonképpen az általános relativitáselmélet keretei között a gravitáció ugyanúgy egy tehetetlenségi erő, egy ún. képzetes erő, ellentétben a newtoni leírással.
Ezen kívül, hogy pontosan mit és hogyan használt fel Einstein, sajnos nem tudom most megmondani.
(Nem magyarországi érettségi lesz)
Rendben. Köszönöm a sok információt, majd megháláljuk. Arra jutottam érdemes foglalkozni még a témával, keresek könyvet ami az elmélet kialakulását elég szájbarágósan leírja.
Ha igazán jó könyvet szeretnél, Einstein maga írt róla és nagyon jól elmagyarázta:
- [link]
-
Mondjuk nem tudom, akkor felétek ezek hogy szerezhetőek be, de talán megoldható.
Illetve Dávid Gyulának (az ELTE atomfizikai tanszékének nyugalmazott tanára) vannak remekjó videói a témában:
- [link]
- [link]
- [link]
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!