Erre nem gondolt a kis Zénó?
Képzeljük el Akhilleuszt, a leggyorsabb görögöt, amint versenyt fut egy teknőssel. Mivel olyan gyors, nagyvonalúan száz láb előnyt ad a hüllőnek. Alighogy elindul a verseny, Akhilleusz pár ugrással ott terem, ahol a teknős kezdett. Ezalatt az idő alatt azonban a teknős is haladt egy keveset, talán egy lábnyit. Akhilleusz egy újabb lépéssel ott terem, ám ezalatt a teknős ismét halad egy kicsit, és még mindig vezet. Akármilyen gyorsan is ér Akhilleusz oda, ahol a teknős egy pillanattal korábban volt, amaz mindig egy kicsit előrébb lesz. Zénón érvelése azt látszik igazolni, hogy Akhilleusz sohasem fogja megelőzni, de még csak utolérni sem a teknőst.
Ma már tudjuk, hogy végtelen sok szám összege is adhat véges eredményt. A paradoxon esetében, ha összeadjuk a végtelen sok apró időszeletet, amit az egyes lépések igénybe vesznek, véges időt kapunk eredményül, méghozzá pontosan annyit, amennyire Akhilleusznak szüksége van, hogy utolérje a teknőst. Ha ennél több időt adunk, természetesen meg is előzi.
Ezt a megoldást egyesek bölcseleti alapon megkérdőjelezik, mondván, hogy végtelen sok számhoz vagy végtelen sok apró időszelethez végtelen ideig kellene az összeadást folytatni, így soha nem érhetnénk célba. A végtelenhez pedig több időt adni – e nézet szerint – eleve abszurditás, hiszen a végtelen minden lehetőséget magában foglal, így nem lehet ahhoz hozzáadni vagy elvonni. Ezt a nézetet az úgynevezett újzénoniánusok képviselik.
Ez a kép nem világos, egyértelmű kérdező? Nem szó szerint kell mindent venni...
Szerintem egyértelmű. Ha mindig csak oda ugrik ahol a teknős az ugrás megkezdésekor volt, mire odaér, a teknős már előrehaladt. Az elv lényege, hogy Achilleusz mindig CSAK ODA ugrik ahol a teknős éppen van. Sose éri utol.
Az a paradoxon, hogy látszólag helyes érveléssel hibás végeredményhez jutunk.
Azért is jó a gondolatkísérlet, mert egy hülye is (nem akarok ujjal mutogatni) felfogja, hogy a futó leelőzi a teknőst.
Kérdező, hát azt sem érted, mit nem értesz. :D Itt van a wiki szövege erről a teknősösről:
"paradoxon sok fejtörést okozott számos ókori és középkori filozófusnak. Newton és Leibniz az analízis területén (elsősorban a végtelen sorozatok kezelésében) elért áttöréseinek köszönhetően váltak feloldhatóvá a 17. században. Azt, hogy a valós számok megalapozása és általában a hagyományos matematika számára nem jelentenek problémát, a 19. században sikerült végleg belátni; amikor az analízis eszközeinek megújításával a matematikusok számos nehéz problémát oldottak meg"
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!