Hogyan számolunk számtani és mértani közepet?
Számtani vagy aritmetikai középértéken n darab szám átlagát, azaz a számok összegének n-ed részét értjük.
A mértani közép a matematikában a középértékek egyike. Két nemnegatív szám mértani (geometriai) középarányosa egyenlő a két szám szorzatának négyzetgyökével. Hasonlóan, több nemnegatív szám mértani közepe a számok szorzatának annyiadik gyöke, ahány számot vettünk. Jele általában G vagy M.
A számtani és mértani közép közötti egyenlőtlenség egy matematikai tétel, amely szerint nemnegatív valós számok számtani középértéke nem lehet kisebb, mint a számok mértani középértéke; egyenlőség is csak akkor állhat fenn, ha a szóban forgó számok megegyeznek.
ilyen dolgoknak tök jól utána lehet nézni pillanatok alatt interneten, pl.a wikin is tuti fent van (ott még tök mély matek dolgok meg tételek is fent vannak), szóval ilyeneket jobban jársz, ha oda beírod, sokkal gyorsabban kiadja, mint ide kiírva.
számtani közép: az átlag magyarul, összeadod a számokat, és elosztod annyival, ahány számot adtál össze. Itt (25+121)/2=146/2=73
mértani közép: összeszorzod a számokat, és veszed az 1/n-edik hatványát, ahol az n az összeszorzott számok száma (tehát ha 2 számnak veszed a közepét, akkor a szorzatuk gyöke, háromnak a szorzatuk köbe, stb.).
Itt gyök(25*121)=gyök(5^2 * 11^2) = 5*11=55.
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!