Prímtesztelés, tanúk?
Azt akarjuk kideríteni, hogy K prmíszám-e. Ha minden igaz, akkor nevezzük A számot tanúnak, hogyha (A, K)=1 és A^(K-1) nem kongruens 1-gyel mod K. Ha kongruens, akkor nem tanú.
Ha egy K-hoz tartozó nem tanúk halmazából injektíven képezzük a tanúk halmazát úgy, hogy megszorozzuk az elemeket A-val, akkor elvileg a nem tanúk halmazának elemszáma kisebb egyenlő, mint a tanúk halmazának elemszáma. Én ezt azért nem értem, mert pl. K=7-nél, van 6 db nem tanú (1,..,6), ha ezeket egyesével megszorozzuk önmagukkal, akkor pl. az 1^2 és a 2^2-nal mi lesz? Ők így nem tanúk. Aztán hogyha tovább tovább hatványozunk, lesz négy szám a tanúk halmazában, ami kisebb, mint a nem tanúk halmazának elemszáma. :(
Valaki tud ebben segíteni?
Igen, ez a Fermat-prímteszt lesz. Azt akarod belátni, hogy ha van tanú (tehát összetett a szám), akkor az összes relatív prím legalább fele tanú. Ezt írod le a kép alján következtetésként.
Ezt úgy látod be, hogy ha egy tanúval beszorzol minden nem tanút, akkor mindig tanút kapsz, amik ráadásul különbözőek lesznek, így jön létre a leképzelésed.
További kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!