Lehet valami gyorsabb a fénysebességnél?
Eddig úgy tudtam hogy nincs gyorsabb a fénysebességnél, ellenben ez a cikk mást ír:
Idézem: "A flerekből kilőtt protoneső egy óra alatt megteszi a Földig tartó utat, ami azt jelenti, hogy iszonyatosan gyorsan és nagy energiával, a fénysebesség több, mint 10%-val közlekedve csapódnak be a bolygónk mágneses mezejébe. De nem csak ezeket küldte nekünk a Nap."
A fénysebesség 110%-ával.... Most akkor lehet valami gyorsabb mint a fénysebesség?
Most hogy átolvastam, igazatok van.
Valamiért azt hittem a fénysebességnél 10%-al gyorsabban.
A kérdés nem aktuális, elnézést.
Ettől függetlenül, hogy itt félreértésrol van szó a fő kerdesre a helyes valasz az, hogy elméletben lehetséges.
Csak az ilyen tulajdonságú részecskéket fénysebesség alá lassítani szükséges végtelen energia.
Nem tudom, #4-est miért kellett lepontozni. Esetleg a megfogalmazás félreérthető, de igaz, hogy a rel. elmélet nem tiltja a fénynél nagyobb sebességeket, csupán a fénysebesség átlépését. Alulról és felülről is.
A hipotetikus tachionok, ha léteznek, olyan részecskék, amelyek csak a fénysebességnél gyorsabban haladhatnak.
#8:
Erre van linked?
Mert eddig BÁRMI fénysebességet túllépő mérési eredmény született, mindről kiderült, hogy mérési hiba.
Erre kíváncsi lennék.
Faster-than-light observations and experiments
Main article: Faster-than-light
Further information: Superluminal motion
There are situations in which it may seem that matter, energy, or information travels at speeds greater than c, but they do not. For example, as is discussed in the propagation of light in a medium section below, many wave velocities can exceed c. For example, the phase velocity of X-rays through most glasses can routinely exceed c,[40] but phase velocity does not determine the velocity at which waves convey information.[41]
If a laser beam is swept quickly across a distant object, the spot of light can move faster than c, although the initial movement of the spot is delayed because of the time it takes light to get to the distant object at the speed c. However, the only physical entities that are moving are the laser and its emitted light, which travels at the speed c from the laser to the various positions of the spot. Similarly, a shadow projected onto a distant object can be made to move faster than c, after a delay in time.[42] In neither case does any matter, energy, or information travel faster than light.[43]
The rate of change in the distance between two objects in a frame of reference with respect to which both are moving (their closing speed) may have a value in excess of c. However, this does not represent the speed of any single object as measured in a single inertial frame.[43]
Certain quantum effects appear to be transmitted instantaneously and therefore faster than c, as in the EPR paradox. An example involves the quantum states of two particles that can be entangled. Until either of the particles is observed, they exist in a superposition of two quantum states. If the particles are separated and one particle's quantum state is observed, the other particle's quantum state is determined instantaneously (i.e., faster than light could travel from one particle to the other). However, it is impossible to control which quantum state the first particle will take on when it is observed, so information cannot be transmitted in this manner.[43][44]
Another quantum effect that predicts the occurrence of faster-than-light speeds is called the Hartman effect; under certain conditions the time needed for a virtual particle to tunnel through a barrier is constant, regardless of the thickness of the barrier.[45][46] This could result in a virtual particle crossing a large gap faster-than-light. However, no information can be sent using this effect.[47]
So-called superluminal motion is seen in certain astronomical objects,[48] such as the relativistic jets of radio galaxies and quasars. However, these jets are not moving at speeds in excess of the speed of light: the apparent superluminal motion is a projection effect caused by objects moving near the speed of light and approaching Earth at a small angle to the line of sight: since the light which was emitted when the jet was farther away took longer to reach the Earth, the time between two successive observations corresponds to a longer time between the instants at which the light rays were emitted.[49]
In models of the expanding universe, the farther galaxies are from each other, the faster they drift apart. This receding is not due to motion through space, but rather to the expansion of space itself.[43] For example, galaxies far away from Earth appear to be moving away from the Earth with a speed proportional to their distances. Beyond a boundary called the Hubble sphere, the rate at which their distance from Earth increases becomes greater than the speed of light.[50]
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!