Kezdőoldal » Tudományok » Természettudományok » Ezt a matematikai egyenletet...

Ezt a matematikai egyenletet ti hogy oldanátok meg?

Figyelt kérdés

(3x-4)n - (6x-7)n = 0


n->négyzeten jelölése


egyébként mi ennek a neve, hogy megtaláljam a könyvben?

az évvégém múlik rajta, holnap...



és van egy ilyen feladat is:


√50-5√8+√2+√128=


ezzel mit kell csinálni?

én eddig jutottam ezzel, nem tudom hogy jó e:

5√2-5√2[harmadikon]+√2+√2[hetediken]


előre is nangyon hálás lennék ha valaki segítene egy kicsit


2017. jún. 11. 13:28
 1/2 anonim ***** válasza:
100%

1)

(3x-4)^2 - (6x-7)^2 = 0

(9x^2 - 24x + 16) - (36x^2 - 84x + 49) = 0

-27x^2 + 60x - 33 = 0

másodfokú megoldóképlet: x1,2 = (-b +- √(b^2-4ac))/2a = ... =

-> x1 = 1, x2 = 11/9


2)

5*√2 - 5*√2^3 + √2 + √2^7 = √2^7 - 5*√2^3 + 6√2 = √2 * (√2^6 - 5*√2^2 + 6) = √2 * (2^3 - 5*2 + 6) = √2 * (8 - 10 + 6) = 4*√2

2017. jún. 11. 13:54
Hasznos számodra ez a válasz?
 2/2 anonim ***** válasza:
100%

Kaphatsz bármikor, azonnali segítséget.

Ez az oldal szépen elmagyarázza: [link]


(3x-4)^2-(6x-7)^2=0 formában írtam be; kijavította látványos formára.

[link]

2017. jún. 11. 14:10
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!