4 ponttal meg lehet adni egyértelműen egy paralelepipedont?
Négy rendezett csúccsal igen. Ahogy a síkon is 3 pont (pl: szabályos 3-szög) 3 db paralelogrammát határoz meg, úgy, ha rendezed õket, akkor már egyértelmûen meghatározzák a paralelogrammát.
Térben hasonlóan.
???
Ha megadsz a síkon 4 pontot, és azt mondod hogy õk valahol benne vannak a paralelepipedonban, az sem lesz egyértelmû.
Most az a kérdés hogy hogyan lehet megadni, vagy az, hogy hogyan nem?
Arra írj ki új kérdést, szerintem egészen sok jó ötlet fog rá érkezni.
- - - - -
Az analógia a paralelogrammával jó és teljes.
Bizonyos szempontból egyébként jogos elvárás, hogy a paralelepipedont tetszõleges 4 darab, "elég erõs" információ meghatározza. Például egy élének két csúcsa, a súlypontja, meg, mondjuk az egyik lapjának a síkja.
Vagy, mondjuk 4 meghatározott lapján 1-1 pont. Stb.
Egy oldalának a 4 csúcsa viszont redundáns, az csak 3 valódi adat, hiszen a negyedik már következik.
Akik meg lepontoztátok 5-t, elmehettek a csudába!
Ha rájövök kik voltatok, majd én is jól lepontozlak. Hrgh! >:(
- - - - - -
A kérdésre visszatérve: az analógia a síkbeli esettel jó és teljes. Ahogy a paralelogrammát tudod megadni, úgy tudod megadni a paralelepipedont. Nem egyértelmû, de, ha konkretizálod hogy melyik pont hol és hogyan helyezkedjen el, utána már az lesz.
Ha fogsz egy kockát, kiválasztod 4 olyan csúcsát (A,B,C,D) akik nincsenek egy síkban, megadsz a térben 4 pontot (A',B',C',D') akik szintén nincsenek egy síkban, akkor a kockát egyértelmûen rá tudod affinítani (nyújtani) a négy kiválasztott pontodra, hogy a pontok nevei is stimmeljenek.
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!