Osztásnál mi a különbség a bennfoglalás és a részekre osztás között?
Itt ír róla, de egyszerűen nem értem, mindkettő teljesen ugyan az számomra.
Azt sem értem, hogy miért egymás kiegészítőpárjai. Valaki elmagyarázná?
Köszönöm.
Gyakorlatilag tényleg semmilyen különbség nincs a kettő között, osztani kell és jól van. Kicsit másmilyen kérdésre válaszol a kettő, ennyi. Ha sokszor elolvasod, amit leírtak, és erősen elgondolkozol a dolgon, akkor előbb-utóbb megérted, de én is elvoltam vele egy darabig, mikor tanultam, és semmi hátrányom nem származott belőle, hogy nem értettem a különbséget. 7. osztály után meg már a tanárok se tettek különbséget a kettő között. Meg például a program nyelvek nagy része csak az '/'-es (valós)osztást érti, szóval a ':'-ot egyáltalán nem bennfoglalásra használják.
(Viszont lehetnek olyan diákok, akik ezeken keresztül könnyebben megértik az osztást. Remélem, az osztást azt amúgy azért érted, mert ha nem, akkor ez a hozzászólásom lehet, hogy inkább káros volt…)
Hogy egymás kiegészítő párjai, azzal arra céloznak, hogy milyen érdekes már a következő tétel:
„Ha (b és c közül egyik sem nulla) és a = b*c, akkor a/b = c és a:c = b.”
(Az előző zárójelhez visszatérve nekem például a szinusz és koszinusz megjegyzésében segített, hogy utána néztem a szekánsnak és koszekánsnak is:
sin(α) = a/c,
cos(α) = b/c,
tg(α) = a/b,
ctg(α) = b/a,
cosec(a) = c/b,
sec(α) = c/a.
Természetesen a derékszögű háromszög oldalainak és szögeinek szokásos jelölését használva.)
Bennfoglalás: 60 : 10 = 6
Jelentése: Ha van 60 aranypénzem, abban hányszor van meg a 10 érme. Mondjuk ha egy kis zacskóban 10 aranyérmét teszek, akkor a 60 aranyérme hány zacskót tesz ki. Összesen 6 zacskót tudok megtölteni.
Osztás: 60 / 10 = 6
Jelentése: Ha van 60 érmém, és azt 10 egyenlő mennyiségű részre osztom és azt csomagolom zsákokba, akkor egy zsákba mennyi kerül? Ha a 60-at elosztom 10 egyenlő részre, akkor egy rész 6 arany lesz.
Egymás kiegészítője a két művelet, hiszen a 60 : 10 = 6 ugyanazt az részekre osztást fejezi ki, mint a 60 / 6 = 10.
Az általános iskola első osztályaiban szépen meg is különböztetik a kettőt. Persze hamar belátható, hogy a két teljesen eltérő művelet ugyanazt az eredményt fogja adni. Fura mód a törteknél kezd eltűnni ez a megkülönböztetés, pedig pont annak a megértésénél a legfontosabb.
Ugyanis az 3 / (1/2) értelmezhetetlen. Mi az, hogy valamit féllel osztok? Maximum elfelezni lehet valamit, ha osztásról van szó, de azt meg úgy írjuk, hogy 3 / 2. Nem csoda, hogy a „törttel való !osztás!” a legtöbb gyereknek érthetetlen matematikai bűvészkedés, mert általában rosszul tanítják.
Annak viszont van értelme, hogy mennyi 3 : (1/2). Ugye ez azt jelenti, hogy ha van három tortád, akkor abban hányszor van meg a fél torta, hány fél tortából tudod összeállítani a 3 egész tortát. Erre a válasz természetesen az, hogy 6 darabról van szó.
A gyerekek sokszor betanulják, hogy „törttel úgy osztunk, hogy a nevezővel szorzunk, a számlálóval osztunk”. De a legtöbb gyerek nem érti, hogy miért kellene így, ha elfelejtené a szabályt, akkor nem valószínű, hogy ki tudná silabizálni. Pedig ha megkülönböztetjük, hogy itt nem osztásról, hanem bennfoglalásról van szó, akkor könnyen megérthető. Ha nem 1/2 -et, hanem 1/4-et nézzük, hogy az hányszor van meg a 3-ban, akkor ugye fele akkora dolgokból kell felépíteni a tortát, tehát kétszer annyi kell belőle. Ha viszont azt nézzük, hogy 3/4 tortákból hány darab kell, akkor ugye háromszor akkora dolgokból kell építkezni, tehát logikus, hogy harmadannyi kell a három torta felépítéséhez.
Szóval a megfelelő absztrakció után lényegtelenné válik, hogy osztásról vagy bennfoglalásról van szó, és lényegtelen hogyan jelölöd. De a megértést nagyon segíti, ha meg tudod különböztetni a kettőt.
Még egy kis kiegészítés. Ha mértékegységeket is írunk, akkor megint könnyebb megérteni:
60 / 10 = 6
60 darab / 10 rész = 6 darab
60 : 10 = 6
60 darab / 10 darab = 6 rész
Osztás: darab / rész = darab
Bennfoglalás: darab / darab = rész
Azta...
Nem gondoltam volna, hogy 25 évesen tudom meg, hogy mi a külömbség. Szerintem nekem is rosszul tanították, mert a bennfoglalást soha nem értettem, nem is foglalkoztam vele, én csak az osztást értettem. Pedig nem vagyok hülye gyerek.
Köszönöm mind a kérdezőnek, mind a válaszolóknak, ma is tanultam. Persze ez nekem már lényegtelen, de ha majd a gyerekem odaér, így jóval egyszerűbben okíthatom a matematika rejtelmeire!
Osztás: elosztasz 20 szem cukorkát 5 felé.
Bennfoglalás: 20 forintból hány szem 5 forintos cukorkát tudsz venni? Azaz a 20-ban hányszor van meg az 5?
Technikailag nincs a kettő között különbség, ugyanúgy kell kiszámolni, ezért alsó tagozat második osztálytól kezdve a bennfoglalás fogalmát nem is használják.
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!