Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Bizonyítsuk be, hogy hat...

Bizonyítsuk be, hogy hat egymást követő természetes szám közül mindig van egy, amelyik relatív prím az összes többihez. Mi a megoldás?

Figyelt kérdés
2017. szept. 21. 15:22
 1/1 anonim ***** válasza:

Ugye két szám akkor nem relatív prím, ha van közös prímosztójuk. 6 szám közül van 3 páros, ezek 2-vel oszthatóak, ők nem relatív prímek minden másikkal. Biztosan van egy 3-mal osztható páros és egy páratlan szám, ezek is kiesnek. Lehet, hogy van 2 5-tel osztható szám, ezek közül szintén egyik páratlan - eddig a 6 számból 5 lehet, hogy nem relatív prím a többiekkel. Viszont, mivel 6 egymás követő szám között nincs 2 olyan, amelyik osztható egy 5-nél nagyobb prímmel, ezért a 6. szám biztosan relatív prím a többiekkel.


Tehát összefoglalva a 6 szám közül, ha 2-t kiválasztunk, akkor közös prímosztójuk csak 2,3 és5 lehet. A 2-vel kizárjuk a 3 páros számot, a 3-mal és az 5-tel pedig 1-1 páratlant is kizárhatunk. De a 6. szám már biztosan nem osztható sem 2-vel, sem 3-mal, sem 5-tel, tehát nincs közös prímosztója a többi számmal.

2017. szept. 21. 21:28
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!