Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Mi a megoldása ennek a feladat...

Mi a megoldása ennek a feladatnak levezetéssel? Bizonyítsa be, hogy semmilyen pozitív egész n-re nem lesz prímszám! 4n^3 + 6n^2 + 4n + 1

Figyelt kérdés
[link]
2015. nov. 15. 20:11
 1/2 anonim ***** válasza:

Szerintem:

[link]

2015. nov. 15. 20:37
Hasznos számodra ez a válasz?
 2/2 bongolo ***** válasza:

Ahogy #1 írta, (2n+1)(2n²+2n+1)

Arról írok még, hogy hogyan lehet rájönni, hogy ki lehet emelni 2n+1-et:


Maga a számolás viszonylag egyszerű, de kicsit hosszú a magyarázat:


Az eredeti polinom egész együtthatós. Elképzelhető, hogy van neki racionális (vagyis p/q alakú) gyöke (más szóval n=p/q-ra az értéke 0). Ha van neki, akkor (n - p/q) kiemelhető belőle, amit szimpatikusabb úgy írni, hogy q·(n-p/q) = (q·n - p) emelhető ki.

Ha van ilyen gyöke, akkor q a legnagyobb kitevőjű tag (most 4n³) együtthatójának az osztója, hisz q·n "bele kell kerüljön" 4n³-be. Hasonlóan meggondolva p pedig a konstans osztója kell legyen.


Most tehát, ha van p/q alakú gyök, akkor p=1 kell legyen, q pedig 1,2,4 közül valami.


Mivel csupa pozitív együtthatónk van, ezért ha n pozitív, akkor a kifejezés tuti nem 0, tehát biztos, hogy a p/q gyök negatív. Ezért (q·n+p) alakú lesz a kiemelhető kifejezés.


Meg kell tehát nézni, hogy (n+1), (2n+1), (4n+1) közül valamelyik osztja-e a polinomot.


Polinomos osztást kell hát végezni velük: n+1-nél maradék lesz, az nem jó.

2n+1-nél sikerül az osztás, az eredmény 2n²+2n+1.

A 4n+1-es osztást ezek után el se kell végezni.

2015. nov. 15. 21:30
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!