Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Határérték jobbról balról...

Határérték jobbról balról egyváltozós valós függvénynél?

Figyelt kérdés

f(x) = (x+1)/(x^2+2x-3), a szakadási pontjai: -3,1


pl 1-nél hogy számolom ki jobbról és balról is a határértékét?



2012. nov. 20. 10:55
 1/2 anonim ***** válasza:

Akkor kell kétoldali határérték, ha az eredetileg "szám/0" típusú. Valóban, a nevező miatt -3 és 1 lesznek a szakadási pontok. A kettő közül az 1-ben lesz "szám/0", itt a módszer a következő. Jobbról "1+" (pl. 1,001), balról "1-" (pl. 0,999) lesz az a hely, ahol a határértéket meg kell nézni.


A számláló mindkét esetben 2 (pontosabban "1+"-ban 2+, "1-"-ban 2-). De nem is ez a fontos, hanem a nevező. Veszünk egy 1-nél kicsivel nagyobb számot (tehát ez az "1+"), ennek négyzete önmagánál (és 1-nél is) kicsivel nagyobb lesz. Ehhez hozzáadjuk ugyanennek a számnak a kétszeresét, az eredmény kicsivel több, mint 3 lesz (3+). Ebből 3-at kivonva, a maradék egészen biztosan pozitív marad, de kb. 0 lesz (0+). Így a keresett határérték 2+/0+, ami + végtelen.


A másik esetben ugyanilyen gondolatmenettel - végtelen lesz. Tehát az 1-ben a szakadás másodfajú (azaz pólus).


-3-ban szintén "szám/0", az eljárás (és a szakadás típusa is) ugyanilyen lesz, íme: [link]

2012. nov. 20. 11:28
Hasznos számodra ez a válasz?
 2/2 A kérdező kommentje:
Köszi
2012. nov. 20. 11:32

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!