Segítséget kaphatok?
Figyelt kérdés
Melyik az a legnagyobb x egész szám, amelyre x>2, és log2(x), log4(2x) és log(3x) egy háromszög oldalhosszai lehetnek?2024. jan. 25. 21:14
2/6 A kérdező kommentje:
Ja, igen tényleg...elírtam
JAVÍTÁS...log2(x), log4(2x) és log8(3x......
Köszi
2024. jan. 25. 21:16
3/6 anonim ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
A háromszög egyenlőtlenségeket írd fel, és oldd meg a kapott egyenlőtlenségeket!
5/6 A kérdező kommentje:
Értem, köszi szépen!
2024. jan. 26. 09:38
6/6 anonim ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
Nem vagy nagyon sportszerű. (C.1797.)
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!