Elakadtam egy a feladatban. Hogyan kéne nekiállnom?
Figyelt kérdés
Bizonyítsd be, hogy 1-100-ig 33 számot kiválasztva mindig lesz két olyan amely nem relatív prím.2020. dec. 4. 18:01
1/6 anonim válasza:
Nem tudom ez bizonyítás e, de 100-ig nincs 33 relatív prím, csak tizenvalamennyi, tehát ha 33-at kiválasztasz, akkor azok között biztos lesz nem prím is.
2/6 anonim válasza:
Készíts Venn-diagramot, amelynek alaphalmaza az első 100 pozitív egész szám szerepel. Ábrázold benne a 2-vel, 3-mal és 5-tel osztható számokat. Írd bele, hogy az egyes tartományokban hány elem van. Szerintem ez után már látni fogod.
3/6 anonim válasza:
Nahát, akkor úgy tűnik már megint butaságot írtam, nem szándékos volt, bocsi. (1. voltam)
4/6 anonim válasza:
Numerikus módszer ér? Szívesen leprogramozom neked, így nem kell semmit sem számolgatni, és megoldás is lesz a végén.
5/6 A kérdező kommentje:
Leprogramozhatod, köszönöm
2020. dec. 5. 08:20
6/6 anonim válasza:
Prímszámok: [link]
100-ig 25 db prímszám van.
Bontsuk osztályokra az első 100 pozitív egész halmazát:
O1:={1}
02:={2, 4, 6, ..., 98, 100}
O3:={3, 9, 15, 21, 27, 33, 39, 45, 51,57, 63, 69, 75, 81,87, 93, 99}
O4:={5, 25, 35, 55, 65, 85, 95}
O5:={7, 49, 77}
O6:={11}
O7:={13}
...
O26:={97}
26 osztály van. A skatulya elv szerint ha legalább 27 elemet választunk, akkor legalább egy olyan osztály, amelybe legalább két elem kerül, ezek pedig nem relatív prímek.
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!