"Mutassa meg, hogy az (an) = n^2 sorozat ∞-be tart. " Ezt hogy kell megcsinálni?
Figyelt kérdés
2020. jan. 4. 12:02
1/4 anonim válasza:
2/4 A kérdező kommentje:
Köszönöm
Hogy lenne ugyanez az (an) = e^(3n+1) sorozatnál?
2020. jan. 4. 13:28
3/4 anonim válasza:
e^(3n+1)>K
3n+1> lnK Az lnx függvény szigorúan monoton nő.
n>(lnK-1)/3
Ha n>(lnK-1)/3, akkor e^(3n+1)>K, azaz an>K
4/4 A kérdező kommentje:
köszönöm
2020. jan. 4. 21:28
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!