Egyenletes folytonosság igazolására ez jó?

Figyelt kérdés

Pl.: Igazoljuk, hogy f(x)=x^(1/3) egyenletes folytonos [-3,3]-on.

Heine-tétel miatt, zárt intervallumon folytonos fv egyenletes folytonos is, tehát már csak az kell, hogy folytonos.

És most jön a kérdésem. Meg lehet úgy úszni, hogy lim (x tart n) f(x) = f(n) minden n eleme [-3,3]-re, és csak ennyit írok le. Vagy el kell játszani az epsilon-deltás játékot?



2019. dec. 11. 21:19
 1/3 A kérdező kommentje:
Boys help pls
2019. dec. 11. 21:47
 2/3 anonim ***** válasza:
75%

Szerintem meg lehet úszni ennyivel. Lényegében a pontban való folytonosság Heine-féle definícióját használod ( [link]

Ami itt a lényeg az, hogy bármely xk -> n estén ...

2019. dec. 12. 14:56
Hasznos számodra ez a válasz?
 3/3 anonim ***** válasza:
63%

A link még egyszer:

[link]

2019. dec. 12. 14:57
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!