Kezdőoldal » Tudományok » Természettudományok » Mikor nem alkalmazható a...

Mikor nem alkalmazható a normál eloszlás?

Figyelt kérdés

Ez volt az egyik kérdésem, és elvileg matematikai választ kell rá adni... de nem az a helyes válasz, ha szigma=0

Valakinek van valami egyéb elképzelése?



2017. máj. 27. 09:06
 1/7 anonim ***** válasza:
100%

Mire nem alkalmazható? Ez egy valószínűségi eloszlás család, néhány valószínűségi változók ezt követik, mások meg nem.

Ha a centrális határeloszlás-tételre gondolsz, akkor kell a véges várható érték és szórás, hogy alkalmazható legyen.

2017. máj. 27. 13:26
Hasznos számodra ez a válasz?
 2/7 anonim ***** válasza:
100%

Sok olyan adatforrás van, amiről tudható, hogy nem a normális eredmény szerinti adatok jönnek ki belőle.

A normális eloszlásnál arról van szó, hogy a végeredményt számos tényező befolyásolja, de egyik sem nagyon.

2017. máj. 27. 18:08
Hasznos számodra ez a válasz?
 3/7 dq ***** válasza:
55%

Mondjuk ha a tapasztalati átlag tart a végtelenbe?


De igen, előző jól írja, akkor nem alkalmazható, amikor nem abból jönnek a változók. (de nagyon nagyon sokszor alkalmazható, ez is egy tétel)

2017. máj. 28. 12:14
Hasznos számodra ez a válasz?
 4/7 anonim ***** válasza:
100%
Lehet végezni khí-négyzet próbát is, ha arra vagy kíváncsi, hogy az adataid jöhetnek-e normális eloszlásból.
2017. máj. 28. 16:30
Hasznos számodra ez a válasz?
 5/7 A kérdező kommentje:

Köszi a válaszokat, egyébként az alapfeltevésem jó volt, ez elegendő volt ahhoz, hogy engem vegyenek fel az állásra. Én a szórással játszadoztam el. Amúgy ha érdekel Titeket, konkrétan a kérdés így hangzik: a Cpk-t milyen esetekben nem használhatjuk? Igazából még ez sem a helyes kérdés, mert az interjú angolul volt... Én levezettem a táblámon, és azt kaptam, hogy az eredményem jó, de van még egy megoldás, de ezt majd elmondja a nagy-nagy-nagy főnök! De attól még, ha van kedvetek, írjatok válaszokat, én is kíváncsi vagyok!


Amúgy a centrális határeloszlást azért zártam ki, mert üzemi paraméterekről volt szó, szóval úgy gondoltam, nem merülök bele a kérdésbe ennyire.


Egyébként én az utolsó kommentelő válaszát adtam meg, és ezzel nyertem: ha szórás tart 0-hoz, f(x) tart kvázi végtelenhez, akkor az átlag körüli ingadozás gyakorlatilag csekély, és nagyon kicsi az eltérés 100, 1000, 10000 minta között. Ez persze azt jeleni, hogy minőségileg 100%-ot teljesítünk a gyártásban.

2017. jún. 5. 13:28
 6/7 A kérdező kommentje:

Amúgy a helyes válasz a legegyszerűbb volt, annyira egyszerű, hogy nem is gondoltam rá: ha nem szimmetrikus az eloszlás...

Amúgy nem is ez volt a lényeg, hanem, hogy foglalkoztam a kérdéssel! :D

2017. aug. 1. 22:36
 7/7 dq ***** válasza:
Ez nem "a helyes válasz" erre a kérdésre.
2017. aug. 5. 02:49
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!