A kalkulus (=analízis) tantárgynak milyen haszna van, érdemes mélyen elsajátítani?
Érthető az érved, de szerintem ha nem tudom min alapul, akkor azt se fogom tudni, hogy az adott feladatot például
integrálással kell megoldani.
Nem Newton volt az aki azt mondta, hogy "a természet törvényeit differenciálegyenletek írják le"?
Az analízis során elsajátított gondolkodás a fizika számos területén alkalmazható -pl a 18-19 századi analízis fejlődéséhez nagyban hozzájárult a mechanika fejlődése és fordítva-
Ha nem érted az alapokat sosem merülhetsz majd el később az izoperimetrikus számolásokban, vagy az absztraktabb matematika / fizika részeiben.
A deriválásnak is számos haszna és tulajdonsága van, érdemes ismerni. Az, hogy egy gép pedig könnyedén kiszámolja helyetted az eredményt lényegtelen, itt az elmélet a fontos. A gép akkor kap jelentőséget mikor nincs egzakt megoldása egy egyenletnek ezért analitikus megoldást / közelítést keresünk.
Ha nem érted, mi a deriválás, integrálás lényege, akkor mit csináltál ott egy fél évig? Ha nem tudod, hogy ezekre egyáltalán szükséged lesz-e, és hogyan, akkor hogy kerülsz arra a szakra?
"Nagyon sok dolgot megtanultam, és a tudásom elvileg elég lesz a vizsga teljesítéséhez"
Na ez itt az igazi probléma.
Nem igazán vannak benne "mély" dolgok. (illetve fogalmam nincs a tematikátokról)
De igen, ha valamit érdemes kenni-vágni, az az analízis.
Gondolom kb minden tárgy építkezni fog arra, hogy te azokat tudod.
"Mégis 800 oldalas kötet kerekedett belőle 3 résszel együtt, és én úgy látom, hogy az első féléves tananyag az 1. könyv elejétől a 2. közepéig tart."
Arra próbáltam rávilágítani, hogy amit kihagytál az 10 oldal, amit meg úgyis tudsz (alkalmazás), az meg 200, tehát csekély erőfeszítéssel meg tudod ismerni az alapjait is.
Az egészet azért furcsállom kissé, mert amikor én jártam egyetemre, akkor és ott az ember rögtön elvérzett számonkérésnél, ha nem értette, mit csinál, mert az alapozó példák erről szóltak; de már az otthoni gyakorlásnál is nehéz lett volna olyan példatárat találni, amiben nincsenek a megértést firtató példák.
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!