Mira4 kérdése:
Hány öt jegyű, páratlan számot képezhetünk a 0,1,2,3,4 számjegyek felhasználásával? Egy számot csak egyszer használhatunk fel.
Figyelt kérdés
Nem tudom hogy kéne megoldani ezt a permutációt, elmagyarázná valaki?2016. nov. 13. 16:26
2/7 anonim válasza:
Az utolsó helyre csak páratlan szám kerülhet: ebből 2 van (1, 3)
Az első helyre bármi, kivéve nulla: ez 3 (2, 4, 1 vagy 3)
A maradék helyre már bármi mehet, tehát a másodikra 3 közül, a harmadikra 2 közül, a negyedikre 1 közül választhatunk.
összességében: 3*3*2*1*2 = 36
3/7 anonim válasza:
"Az első helyre bármi, kivéve nulla: ez 3 (2, 4, 1 vagy 3)"
ez nem 3, hanem 4, és akkor 4x3!x2
4/7 anonim válasza:
Viszont akkor az utolsó helyre már nincs választási lehetőséged!
6/7 anonim válasza:
Pedig ez három, nem négy. Az utolsó számjegy vagy 1, vagy 3, és egy számot csak egyszer lehet felhasználni, akkor ha az utolsó 1, akkor az első csak 2, 3, vagy 4 lehet, ha az utolsó 3, akkor pedig az első 1, 3, vagy 4.
7/7 anonim válasza:
"Az első helyre bármi, kivéve nulla: ez 3 (2, 4, 1 vagy 3)"
valóban kicsit félreérthetőre sikerült, talán így érthetőbb:
Az első helyre bármi, kivéve nulla: ez 3 (2, 4, és 1 vagy 3 attól függően, hogy melyiket választottuk az utolsó helyre.)
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!