Kezdőoldal » Tudományok » Természettudományok » Ténylegesen valós randomszám...

Ténylegesen valós randomszám generátor elvi szinten sem létezhet?

Figyelt kérdés
Olyan randomszám-generátor, ami a valós számok halmazán működik.

#valós számhalmaz #random-generátor
2023. dec. 18. 21:00
1 2
 11/18 krwkco ***** válasza:
0%

#10

"A kérdés viszont valósan létező/megépíthető véletlenszám-generátorról szólt..."

Azt hiszed?

"Olyan randomszám-generátor, ami a valós számok halmazán működik."

2023. dec. 19. 00:14
Hasznos számodra ez a válasz?
 12/18 anonim ***** válasza:
24%
Jelenleg a számítógépeken csak racionális számokat tudunk ábrázolni. Az irracionális számokat csak "közelíteni" tudjuk. De a kérdés amúgy teljesen értelmetlen.
2023. dec. 19. 00:21
Hasznos számodra ez a válasz?
 13/18 anonim ***** válasza:
48%

krwkco - úgy látom, hogy a te értelmezésed alapján csakis valamilyen idióta trollkérdésről lehetne szó - mert értelemszerűen semmilyen véletlenszám generátor, mérőműszer, számítástechnikai eszköz, stb. nem dolgozhat a "valós számok halmazán" - ugyanis fizikai okokból kiindulva - létező szerkezet csakis véges elemszámú számhalmazokkal dolgozhat!


Én egészen biztos vagyok benne, hogy a kérdés nem ilyen értelmezéssel volt megfogalmazva, hisz különben alapból már teljesen értelmetlen lenne.

2023. dec. 19. 00:27
Hasznos számodra ez a válasz?
 14/18 anonim ***** válasza:
#12 - bármilyen analitikus formában leírható irracionális számot tudunk ábrázolni. Például leírom azt, hogy "pí" vagy "gyök kettő" - és már egyértelműen ábrázoltam is két irracionális számot!
2023. dec. 19. 00:31
Hasznos számodra ez a válasz?
 15/18 anonim ***** válasza:

13:

Én is úgy értettem a kérdést, ahogy 11, azaz generálás a valós számok halmazán...

2023. dec. 19. 08:04
Hasznos számodra ez a válasz?
 16/18 anonim ***** válasza:

Mivel ez a "Természettudományok" rovat, így illene betartani bizonyos értelmi színvonalat - ezért a 10. (12. 18. 23:47) válasz lepontozói indokolják meg eme ocsmány tettüket!


Például látott már valaki fizikailag végtelenül pontos 1-es (vagy bármilyen más) számértéket? A jelenlegi ismereteink szerint mind a makro, mind a mikrovilágban ez teljességgel lehetetlen, csak a buta és felszínes emberek nincsenek ezzel tisztában!

:-(

2023. dec. 19. 09:14
Hasznos számodra ez a válasz?
 17/18 anonim ***** válasza:
14: Akkor írd fel nekem algoritmikusan, hogyan fog a számítógép pontosan ábrázolni tetszőleges nem racionális valós számot, ami nem írható fel az általad (amúgy számítógépen nehezen ábrázolható) formában, úgy hogy utána pontosan tudjon vele számolni. Mert hiába tudodegy papírra leírni, hogy "pi" ez még nem számábrázolás (és nem azt írtam, hogy papírra nem tudjuk leínri, hogy "pi" hanem, hogy számítógépen nem ábrázolható a kettő nagyon nem ugyanaz). Pl. számoltasd ki a valós számok halmazán egy mai számítógéppel pi-nek e-ik hatványát. Egy papírra le tudjuk írni, tudunk vele "műveleteket" végezni, de az eredményt nem fogod tudni megjeleníteni valós formában semmilyen számítógépen. Egy racionális kettedestörtes közelítést lehet csak kiszámolni. De az nem lesz valós szám.
2023. dec. 19. 10:59
Hasznos számodra ez a válasz?
 18/18 anonim ***** válasza:

#17 - nem vagyok mesterséges intelligencia programozó, hogy ideális fogalmakkal dolgozó rendszereket programozzak fel. A téma pedig egészen más volt - mégpedig a "valós randomszám generátor" - mely természetesen megoldható tetszőleges pontosságú számérték kigenerálására is.


Jó dolog keverni a szezont a fazonnal - meg az ideális számfogalmakat a valódi számosság értelmezésével - ugye?

2023. dec. 19. 12:10
Hasznos számodra ez a válasz?
1 2

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!