Kezdőoldal » Tudományok » Természettudományok » Ha végtelen sok transzcendens...

Ha végtelen sok transzcendens számot szorzunk össze (és a szorzat konvergens), akkor kaphatunk algebrai számot?

Figyelt kérdés
2019. okt. 21. 16:47
 1/6 anonim ***** válasza:

igen, csak ügyesen kell megválasztani a számokat.


mondjuk pl. n= 1... +végtelen

az elemek pedig:


A(n) = e^[1/(n-(n mod 2))*(-1)^(n mod 2)]

2019. okt. 21. 17:15
Hasznos számodra ez a válasz?
 2/6 anonim ***** válasza:
100%

Természetesen; veszel végtelen sok transzcendens számot, majd veszed ennek a végtelen sok transzcendens számnak a reciprokát (amik nyilván szintén transzcendensek). Ha összeereszted őket, akkor láss csodát, 1-et kapsz eredményül.


Volt már vita korábban abból, hogy megszámlálhatatlanul végtelen sok számnak egyáltalán lehet-e definiálni a szorzatát/összegét/..., így ez csak megszámlálhatóan végtelen darab számra igaz biztosan.

2019. okt. 21. 17:38
Hasznos számodra ez a válasz?
 3/6 anonim ***** válasza:
Az előző által vázolt helyzet előfordulhat. A megfelelő sorozat létezésére van szükség, ami valóban létezik, hiszen majdnem minden szám transzcendens. Ha a sorozat konvergenciája megfelelő, akkor az összefésült sorozat konvergenciája is megfelelő lesz.
2019. okt. 21. 20:42
Hasznos számodra ez a válasz?
 4/6 2*Sü ***** válasza:

#2> Természetesen; veszel végtelen sok transzcendens számot, majd veszed ennek a végtelen sok transzcendens számnak a reciprokát (amik nyilván szintén transzcendensek). Ha összeereszted őket, akkor láss csodát, 1-et kapsz eredményül.


Sajnos ez nem jó. Első blikkre ötletes felvetés, de az a gond ezzel, hogy nem tudod konvergens sorba fejteni a kifejezést.


Vegyük a legegyszerűbb példát π-vel.


(π/1) * (1/π) * (π/1) * (1/π) * (π/1) * (1/π) * …


Ezt ha úgy csoportosítom, akkor valóban 1-ek szorzódnak össze:


∏ [(π/1)*(1/π)] = [(π/1) * (1/π)] * [(π/1) * (1/π)] * [(π/1) * (1/π)] * … = 1 * 1 * 1 * 1 * … = 1


De ha máshogy csoportosítom, akkor máris más a helyzet. Az eredeti kifejezés felírható így is:


(π/1) * ∏ [(1/π)*(π/1)] = (π/1) * [(1/π)*(π/1)] * [(1/π)*(π/1)] * [(1/π)*(π/1)] * … = π * 1 * 1 * 1 * … = π * 1 = π


A szorzás, összeadás kétoperandusú művelet. Nyilván ki lehet terjeszteni több operandusra is, de az visszavezethető kétoperandusú műveletek egymásutáni elvégzésére. Véges operandus esetén bár a szorzás is, az összeadás is kommutatív, illetve asszociatív, végtelen sorok összege, szorzatat esetén viszont nem feltétlenül az. Ha a végtelen sor nem konvergens, akkor a szorzat, illetve az összeg operandusai nem cserélhetőek fel és nem csoportosíthatóak tetszés szerint.


~ ~ ~


> Volt már vita korábban abból, hogy megszámlálhatatlanul végtelen sok számnak egyáltalán lehet-e definiálni a szorzatát/összegét/


Hát mivel a szorzat is, az összeg is nem más, mint operandusok és a közöttük végzett műveletek egymásutánija, így minden operandusnak és műveletnek megvan a saját „sorszáma”. Ahhoz, hogy szorzatként, összegként fel tudd írni egy megszámlálhatatlanul végtelen halmaz elemeit, ahhoz sorba kellene őket venni, kvázi bijektív leképezést kellene alkotni a halmaz és a természetes számok között. A megszámlálhatatlanul végtelen halmaz pont attól az, hogy nem képezhető ilyen bijektív leképezés a természetes számokkal, így aligha lehetne felírni a szorzatot, összeget. Aztán persze nem tudom, hogy nincs-e pl. valamilyen geometriai megközelítésben értelmezve egy kontinuum számosságú halmaz összege, szorzata, mindenesetre én a szorzásnak, összeadásnak ilyen jellegű kiterjesztésével nem találkoztam.


> így ez csak megszámlálhatóan végtelen darab számra igaz biztosan.


Nemrég a kérdező egy másik kérdésénél kicsit taglaltam ezt is. Lásd: https://www.gyakorikerdesek.hu/tudomanyok__termeszettudomany.. (9. válasz)

Tehát még megszámolhatóan végtelen számosságú halmaz szorzata, összege sem létezik szigorúan algebrai értelemben. Analízissel tudunk határértéket számolni, ami nagyon hasznos, de ha nagyon szigorúan vesszük, akkor ez a határérték nem maga a szorzat, csak annak egy megközelítése. Mikor azt mondjuk, hogy

∑{i=1…∞} a[i]

akkor tulajdonképpen mi csak ezt tudjuk kezelni:

lim{n→∞} ∑{i=1…n} a[i]

2019. okt. 22. 11:21
Hasznos számodra ez a válasz?
 5/6 anonim ***** válasza:

#4 Igen, kettes pongyolán fogalmazott, de ettől még könnyen alkotható olyan példa amin működik, pl. (1 + π/n) és annak reciprokai. Ezt csoportosíthatod akárhogy, mindig 1 lesz a végtelen szorzat.


Vagy ennél is egyszerűbb a π/n sorozat, melynek végtelen produktuma nulla, ami a legalapvetőbb algebrai szám. A kérdező kérdését ez megválaszolja.

2019. okt. 22. 13:57
Hasznos számodra ez a válasz?
 6/6 2*Sü ***** válasza:
52%

> …Ezt csoportosíthatod akárhogy, mindig 1 lesz a végtelen szorzat.


Lásd az előző válaszomat:


(π/1) * (1/π) * (π/1) * (1/π) * (π/1) * (1/π) * … =

= (π/1) * [(1/π)*(π/1)] * [(1/π)*(π/1)] * [(1/π)*(π/1)] * … =

= π * 1 * 1 * 1 * … = π * 1 = π


Tehát nem. Tudom úgy értelmezni, hogy nem 1, hanem π legyen az eredmény. Azért nem, mert itt a produktum divergens. A tagok számának növekedésétől függetlenül mindig 1 és π között oszcillál az eredmény.


Az első válaszoló példája sokkal jobb, mert ott a produktum konvergens.

2019. okt. 22. 14:32
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!