Hogyan lehet bizonyítani a következő matematikai állítást?
Figyelt kérdés
Hogyan lehet bebizonyítani azt, hogy (-1)^(pi*i) az irracionális szám? Ha egyáltalán az.2019. szept. 26. 19:24
1/2 A kérdező kommentje:
Ja, és itt "i" az imaginárius egység, azaz sqrt(-1).
2019. szept. 26. 19:27
2/2 anonim válasza:
Nehezen, legalábbis eddig senkinek se nagyon sikerült. [link]
Az előző link alapján π*e és eközül a szám közül legalább az egyik irracionális. [link]
(Ugye az Euler-azonosság alapján –1 = e^(i*π)-t helyettesítve:
(–1)^(π*i) = (e^(i*π))^(π*i) = e^(i*π*π*i) = e^(–π^2),
aminek a reciproka a mathoverflow-linken emlegetett e^π^2. Egy (nem-nulla) szám és reciproka pedig mindig egyszerre racionális vagy irracionális. De gondolom, amit ebbe a bekezdésbe írtam, az triviális.)
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!