Kezdőoldal » Tudományok » Egyéb kérdések » Hogyan lehetne a legkönnyebben...

Hogyan lehetne a legkönnyebben megjegyezni, hogy milyen feladatoknál használok koszinusz, illezve szinusz tételt?

Figyelt kérdés
ma 14:24
 1/7 anonim ***** válasza:
42%
Mi lesz majd amikor analízist fogsz tanulni... Ott meg kell sejteni, hogy melyik megoldással jön ki szépen és gyorsan. Nyilván a többivel is kijön, de baromi sok lépéssel, nagyon ronda törtekkel és gyökökkel.
ma 14:38
Hasznos számodra ez a válasz?
 2/7 A kérdező kommentje:

Az lesz, hogy valahogy megtanulom azt is egy 2-esre, aztán soha többet nem foglalkozok vele, és elfelejtem.


De most az aktuális kérdésre válaszoljatok.

ma 14:43
 3/7 A kérdező kommentje:

Eddig ezt nyomoztam ki:


Cosinus tétel használata:


- 3 oldalt ismerünk, és abból ki tudunk számolni egy szöget.

- ismerünk két oldalt és az általa közbezárt szög van megadva.


Szinusz tétel használata:


Meg van adva 1 oldal és 2 szög.


Meg van adva 2 oldal és az egyikkel szemközti szög.

(Másként fogalmazva: 2 oldal és NEM a közbezárt szög)


Ez így jó?

ma 14:48
 4/7 anonim ***** válasza:
77%

Akkor se jó, ha jó. Mégpedig azért, mert az életről téves elképzeléseid vannak. Amit bemagolsz, arra egy feleletnél kaphatsz kettest, ha ügyes vagy akkor is, ha egyébként egyes dukálna. Ám egyszer kikerülsz az életbe, ott mások a szabályok. És neked ilyen szemlélettel nem osztanak lapot.


A koszinusz tételnek egyáltalán nem az a szerepe, hogy mindenféle háromszögekről számolgass. Annak az, hogy az összeadásnál kicsit bonyolultabb dolgot megérts, hasznosíts. Ez teszi lehetővé a bonyolultabbak megértését, míg eljutsz odáig, hogy eredményes munkával jelentős jövedelmed legyen. Ez nem kötelező, mint az iskola, az életben semmi sem kötelező. Ott mindössze az van, ha értesz valamihez, jól élsz, ha nem értesz semmihez, akkor nyomorogsz. Életed végéig, és nyomorgással ez sokkal rövidebb.


A szinusz fogalma, egy derékszögű háromszögben az ismert befogó és átfogó hányadosa a szemközti szögre vonatkozik, a koszinusz pedig a befogó és az átfogó által közre zárt szögre. Ha ezt általánosítjuk, bármely háromszög megfelelően bontható derékszögű háromszögekre, így a háromszög ismert két adatából a háromszög bármilyen adata kiszámítható.

ma 15:15
Hasznos számodra ez a válasz?
 5/7 anonim ***** válasza:
80%

Szoktak ilyen rigmusokat tanítani, és bizonyos tekintetben jó mankónak, de ezek maximum az alapfeladatok esetére használható.


A koszinusztétel egyébként akkor is használható, hogyha a nem közbezárt szög van megadva, sőt, jobb is, ha azt használjuk akkor, mint a szinusztételt.


Egyszerűen annyi a dolgod, hogy behelyettesítesz mindkét tételbe, és megnézed, hogy az így kapott egyenletek közül melyiket tudod megoldani, ez ennyire egyszerű.

ma 17:07
Hasznos számodra ez a válasz?
 6/7 A kérdező kommentje:

Elég ha az alapfeladatokat meg tudom oldani.

Én csak a 2-esre hajtok. Nem érdekel a téma mélyebben, mivel nincs tehetségem hozzá.

ma 18:10
 7/7 anonim ***** válasza:
Ha az egyik nem használható, mert sok az ismeretlen, akkor a másikat kell elővenni.
ma 21:18
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!