Hogyan kell kiszámolni egy háromszögnek 2 oldalát egyenlettel?
Figyelt kérdés
Meg van adva a legrövidebb oldal(4 cm) illetve a három szög: 40 fok,60 fok és 90 fok. Valaki tudna segíteni hogy kell a háromszögnek a másik két oldalát kiszámolni egyenlettel?2019. máj. 19. 13:01
1/14 bollocks válasza:
Szinusztétellel a legegyszerűbb, de hibás adatokból nem fogsz helyes eredményeket kapni.
2/14 anonim válasza:
A háromszög belső szögeinek összege 180 fok. A három szög, amit írtál, azoknak az összege 190 fok, azaz ez nem egy háromszög.
3/14 anonim válasza:
"A háromszög belső szögeinek összege 180 fok. A három szög, amit írtál, azoknak az összege 190 fok, azaz ez nem egy háromszög."
Lehet, hogy a kérdező Riemann-geometriában gondolkodik. Bár akkor még kellenek további adatok.
4/14 A kérdező kommentje:
40 helyett 30. Elnézést az elírásért.
2019. máj. 19. 19:00
5/14 anonim válasza:
Ja, ha 30fok, akkor rém egyszerű, ugyanis a háromszög derékszögű. Gondolj a 60°-30° os derékszögű vonalzóra...
6/14 anonim válasza:
Vagyis csak tudni kell pl. azt, hogy a 3,4,5 Pitagoraszi számhármasok.
De a legkisebb oldal most 4cm, ezért a Pitagoraszi számhármasokat arányosan kell növelni. Azaz mindegyiket be kell szorozni 4/3-al.
Így a keresett 3 oldal: 4cm, 16/3 cm és 20/3 cm.
7/14 A kérdező kommentje:
Sohasem hallottam még erről a Pitagoraszi számhármasokról. Vagy tényleg sohasem használtuk órán eddig még, vagy csak pont nem figyeltem mikor tanították. :D Mindenesetre, köszönöm szépen a segítségeteket! Hasznát fogom még venni a jövőben.:)
2019. máj. 19. 20:08
8/14 bollocks válasza:
#6: azt is lehetne tudni, hogy a Pithagoraszi számhármasoknál sosem 30-60-90 fokosak a szögek, mint ahogy leírt megoldásodban sem. A 30 fokos szögből rögtön észrevehetted volna, hogy az átfogó 8cm lesz.
9/14 anonim válasza:
Mi is most vettük ezt az anyagot, de teljesen más "megoldásokkal", szóval lehet ez is segíthet. Ha a háromszög belső szögei 60-30-90 fokosak, akkor az speciális eset, van rá két "szabály". 1: a rövidebbik befogó az átfogó fele, így ebből kiindulva az átfogó 8cm. Innen pedig egyszerű Pitagorasszal is ki lehet számolni. Illetve
10/14 anonim válasza:
Véletlen elküldte. Szóval van még egy képlet. Ha az átfogó van megadva, ki lehetne számolni az előzővel is, de ki lehet számolni a hoszabb befogót egy képlettel is. Legyen az átfogó n. Akkor a hosszab befogó az n*gyök3/2. Remélem értető volt, mert amúgy rém gyenge vagyok matekból, magyarázno sem tudom, csak ezt az anyagot pont értem. :D
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!