Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Andrásnak el kellett utaznia...

Andrásnak el kellett utaznia a 160km távolságra lévő városba. A tervezett sebességnél 20km/h-val gyorsabban vezetett, így 24 perccel előbb érkezett meg. Mennyi lett volna az eredeti sebessége Andrásnak?

Figyelt kérdés
Ti hogyan oldanátok meg? Köszi a segítséget. :)
2015. márc. 9. 17:30
 1/6 anonim ***** válasza:
Ki az az András,és nem büntették meg?
2015. márc. 9. 17:42
Hasznos számodra ez a válasz?
 2/6 anonim ***** válasza:

Ja a válasz: Kérdwzd meg tőle.


Bocs, nem tudtam kihagyni ;D

2015. márc. 9. 17:43
Hasznos számodra ez a válasz?
 3/6 A kérdező kommentje:
Ezek már nekem is eszembe jutottak, csak az a baj hogy nem jutok vele előbbre :)
2015. márc. 9. 17:51
 4/6 anonim ***** válasza:

Az adatok - egy kivétellel - km, óra, km/óra mértékegységűek.

A 24 perc 24/60 óra = 0,4 óra.


És a megoldás kiinduló egyenlete: (160/x)+0,4=160/(x+20).


...


A megoldásnak 2 gyöke van: -100, és 80. Ebből az utóbbi alkalmas számunkra.


Terv szerint, tehát, 80 km/óra lett volna az átlag-sebessége. Így 2 óra alatt tette volna meg a 160 km-es utat.

Ténylegesen 80+20=100 km/órás volt az átlag-sebessége. Így 160/100 = 1,6 óra alatt tette meg az utat.

2-1,6=0,4.

2015. márc. 9. 18:14
Hasznos számodra ez a válasz?
 5/6 anonim ***** válasza:

Elnézést kérek, az egyenletben a +0,4 a jobb oldalra kell.

Ugyanis mindkét oldalon idő(tartam van), és ha 20 km-rel nagyobb sebességgel haladt (x+20), akkor rövidebb idő alatt tette meg az utat, tehát az egyenlőséghez az időkülönbséggel növelni kell ezt az időt.

Mégegyszer elnézést kérek, ha elkezdted megoldani a rossz egyenletet.

2015. márc. 9. 18:43
Hasznos számodra ez a válasz?
 6/6 anonim ***** válasza:

Kézírással hamar megvolt, de ezzel bajlódtamm; ezért is írtam el itt az induló képletet.


Elkészült a számolás is, ha szükséged van rá.


Sajnos, a GYK nagyon eltorzítja a formát, így nem tudom látványosan megjeleníteni a törteket.


160/x = 160/(x+20) + 0,4

160/x – 160/(x+20) = 0,4

160*(x+20)/(x*(x+20)) – 160*x/(x*(x+20)) = 0,4

(160*x + 160*20)/(x*(x+20)) - 160*x/(x*(x+20)) = 0,4

(160*x + 3200)/(x*(x+20)) - 160*x/ - 160*x/(x*(x+20)) = 0,4

(1660*x + 3200 – 160*x) / (x*(x+20)) = 0,4

3200 / (x*(x+20)) = 0,4

3200 / (x² + 20*x) = 0,4

3200 = 0,4 * (x² + 20*x)

3200 = 0,4*x² + 8*x

0 = 0,4*x² + 8*x – 3200


A másodfokú egyenlet megoldó képletét kell alkalmazni.

Megfelelő négyzetgyök-jelet nem tudok rajzolni, így ami négyzetgyök alatt van, azt N betűk közé írom. (Elnézést kérek, tudom, furcsa.)


(-8+N8²-4*0,4*(-3200))N/(2*0,4) = 80

(-8-N8²-4*0.4*(-3200))N/(2*0.4) = -100

2015. márc. 9. 19:16
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!