Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Jelöljük ki a 2005-nél kisebb...

Jelöljük ki a 2005-nél kisebb pozitív egész számok összeadását! Legkevesebb hány összeadandó hozzáadását kell kivonásra változtatni ahhoz, hogy az így kapott műveletsor eredménye 2 004 000 legyen?

Figyelt kérdés
2012. febr. 12. 17:21
 1/8 bensdorp ***** válasza:

1+2004=2005

2+2003=2005

3+2002=2005

stb.

2004:2=1002 ilyen összeadás (pár) képezhető, vagyis az összes szám összege 1002*2005=2009010.

Ha összeadást kivonásra változtatunk, az azt jelenti, hogy ebből az összegből kétszer kell kivonni egy-egy ilyen választott tagot.

2009010-2004000=5010, ennyit kell összesen kivonnunk.

5010:2=2505, ilyen nagy számunk nincs, vagyis nem lesz elég 1 tagot kivonni.

5010:4=1252.5, így 2 szám összeadási műveletét kell kivonásra változtatnunk, az 1252-ét és az 1253-ét.

2012. febr. 12. 21:56
Hasznos számodra ez a válasz?
 2/8 anonim ***** válasza:

Az előző válasz addig jó, hogy 5010-et kell összeszedni 1és 2004 közötti számokból.

1252 és az 1253 összege nem 5010, tehát kettőnél több számot kell negatívra változtatni.


Több megoldása is van a feladatnak

1.

Ha a sorozat két utolsó tagját - 2004 és 2003 - összeadod, akkor még mindig hiányzik 1003, így a

2004 + 2003 + 1003 trió egy megoldás


2.

Van elegánsabb megoldás is.

Mivel 5010 osztható 3-mal és

5010/3 = 1670,

minden olyan számhármas megoldás, melynek számai a következő alakúak:

1670 - d, 1670, 1670 + d


Mivel a legnagyobb felhasználható szám: 2004, ezért az

1670 + d ≤ 2004

egyenlőtlenségből

d ≤ 334

lehet.

Mivel pozitív egész számok jöhetnek szóba, ezért

1 ≤ d ≤ 334

lehet.


d = 1 esetén a számok

1669

1670

1671


d = 334 esetén

1336

1670

2004


DeeDee

***********

2012. febr. 13. 00:45
Hasznos számodra ez a válasz?
 3/8 bensdorp ***** válasza:

DeeDee nagyon jó válaszokat szokott adni, de ez most sajnos helytelen. Mint írtam, 2x kell levonni a tagokat, hiszen az összeadást átírjuk kivonásra.

Nézd csak: 1+2+...+1252+1253+...+2004=2009010

1+2+...-1252-1253+...+2004=2004000

A 2 egyenlet különbsége: 1252+1253-(-1252)-(-1253)=5010

2012. febr. 13. 01:14
Hasznos számodra ez a válasz?
 4/8 anonim ***** válasza:

Akkor lássuk. :-)


Lehet, hogy rosszul értelmezem a feladatot, ezért, tisztázzuk, hogy egyről beszélünk-e?

Van egy számtani sorunk, amelynél

a1 = 1

an = 2004

d = 1

Ezekkel a sorösszeg

Sn = 2009010

A feladat az, hogy a sorozat tagjai közül néhányat ellenkező előjelűre kell kicserélni úgy, "hogy az így kapott műveletsor eredménye 2 004 000 legyen?"

Kérdés: hány tag előjelét kell megváltoztatni ennek eléréséhez?


Egy kivonással eldönthető, hogy

2 009 010 - 2 004 000 = 5010

nagyságú negatív összeget kell kreálni valahány számból, a sor tagjai közé tartozó - 1 és 2004 - közti számokból.


Azt írod:

"Nézd csak: 1+2+...+1252+1253+...+2004=2009010

1+2+...-1252-1253+...+2004=2004000"


Az első sor korrekt, tulajdonképpen a sorösszeg.

A második viszont már nem igaz!

Ha a sorozat két tagját negatívra változatatod, akkor akkor többször nem számolhatsz velük, a negítív értékükkel vesznek rész az összegzésben.

Ha 2009010-ből kivonod a két szám összegét - [-(1252 + 1253)] - akkor nem 2004000 az így létrejövő sor összege.


Az teljesen korrekt, hogy

2(1252 + 1253) = 5010,

a probléma csak ott van, hogy az 1-től 2004-ig terjedő egymás utáni számok között mindegyikből csak EGY DARAB van. :-) Nem számolhatod őket duplán.

Mi a véleményed?


DeeDee

**********

2012. febr. 13. 02:31
Hasznos számodra ez a válasz?
 5/8 bensdorp ***** válasza:

"1+2+...-1252-1253+...+2004=2004000" - ez a sor is igaz:

1002*2005=2009010, ha hozzáadtuk a két számot

2009010-1252-1253=2006505, ha mégsem adtuk hozzá

2006505-1252-1253=2004000, ha még le is vontuk.


Bár valóban minden számból csak egy darab van, de az összeghez KÉPEST a duplájukkal lesz kevesebb az eredmény.


Átláthatóbb példa:

1+2+3+4+5+6=21

1-2-3+4+5+6=11

Az összegnél nem 5-tel lett kevesebb az eredmény, hanem 10-zel.


Meggyőztelek? :)

2012. febr. 13. 08:03
Hasznos számodra ez a válasz?
 6/8 anonim ***** válasza:

Elismerem, én gondolkodtam rosszul.

Meggyőztél. :-)

2012. febr. 13. 15:22
Hasznos számodra ez a válasz?
 7/8 A kérdező kommentje:
köszi
2012. febr. 13. 18:32
 8/8 bensdorp ***** válasza:
Úgy látom, nekünk egy kicsit nagyobb élmény és katarzis volt, mint a kérdezőnek. :D De szívesen.
2012. febr. 13. 20:07
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!