Ezt hogy kell megoldani? Bontsa fel a 8cm-es szakaszt két részre úgy, h az egyes részek fölé rajzolt egyenlő oldalú háromszögek területének összege a lehető legkisebb legyen.

Figyelt kérdés

Ha jól tudom, akkor pont ketté kell 4-4re osztani de nem biztos, és hogy kell kiszámolni?



köszi


2011. nov. 14. 17:05
 1/1 BKRS ***** válasza:

mondjuk felosztod x es 8-x hosszusqagu szakaszokra.

Ekkor a ket haromszog magassaga:

(√3/2)x es (√3/2)*(8-x) lesz

ezert a ket terulet osszege:

T = (√3/2)x*x/2 + (√3/2)*(8-x)*(8-x)/2 =

=(√3/4)(2x^2 -16x+64)=

=(√3/2)(x^2 - 8x + 32)

Ennek ott lesz a minimuma ahol az x^2 - 8x + 32 parabolanak van a minimuma,

vagyis x=8/(2*1)=4-nel.

A parabola minimuma megtalalhato derivalassal,

vagy kiszamolod hol vannak a zerus helyei, es veszed a ket zerus hely atlagat, ott lesz a minimuma,

vagy tudod kepletbol, hogy "-b/2a"-nal van a minimuma.

2011. nov. 14. 17:11
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!