Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Segítség hatványozásban?

Segítség hatványozásban?

Figyelt kérdés

Megállapodás:

a−ⁿ=1/aⁿ


Bizonyítani kéne ennél az azonosságnál:

aⁿ/a-ⁿ


Remélem így érthető, nem tudtam szabályosabban leírni.


2011. okt. 18. 16:44
 1/6 BKRS ***** válasza:

Megállapodás:

a−ⁿ=1/aⁿ


Bizonyítani kéne ennél az azonosságnál:

aⁿ/a-ⁿ = aⁿ/(1/aⁿ) =


osztas = reciprokkal szorzas

aⁿ * aⁿ ami azt jelenti , hogy osszesen 2n-szer szorzod ossze a-t = a²ⁿ

2011. okt. 18. 16:55
Hasznos számodra ez a válasz?
 2/6 A kérdező kommentje:

Ez jó megoldás, de én másra gondoltam. :S

Matek órán megállapodtunk abban, hogy a−ⁿ=1/aⁿ.

Na most a tanárunk elvárja, hogy mind az 5 azonosságnál bizonyítsuk, hogy biztos jó a megállapodás.

Példának vettük az 1. azonosságot, ahol a végeredmény 1 lett..Nem tudom, hogy itt is így kell-e megoldani, de szerintem olyan egyenletet kéne felírni, ahol a végeredmény 1. Javíts ki, ha tévednék.

2011. okt. 18. 17:07
 3/6 BKRS ***** válasza:
Mi az 5 azonossag amit meg kell neznetek?
2011. okt. 18. 23:33
Hasznos számodra ez a válasz?
 4/6 A kérdező kommentje:

A hatványok azonosságai:

[link]


Az első 5 pont felsorolva, és elvileg a fenti megállapodással kéne kiegészíteni az egyenleteket, hogy a végén 1-et kapjunk.

2011. okt. 19. 06:47
 5/6 BKRS ***** válasza:

1) (ab)^n * (ab)^(-n) = (a^n * b^n) * 1/(ab)^n =

(a^n * b^n) * 1/(a^n * b^n) = (a^n / a^n) * (b^n / b^n) = 1


2) (a/b)^n * (a/b)^(-n) = [(a^n)/(b^n)] * 1/(a/b)^n =

[(a^n)/(b^n)] * 1/[(a^n)/(b^n)] = [(a^n)/(b^n)] * [(b^n)/(a^n)]=

(a^n * b^n)/(b^n * a^n) = (a^n / a^n) * (b^n / b^n) = 1


3)

(a^n)^k * (a^(-n))^k= a^(nk) * 1/((a^n)^k) = a^nk * 1/a^nk =

(a^(nk))/(a^(nk)) =1


4)

(a^n)*(a^m) * (a^(-n))*(a^(-m)) = (a^n)*(a^m) *(1/(a^n))*(1/(a^m) ) =

((a^n)/(a^n))*((a^m)/(a^m)) = 1


5)

((a^n)/(a^m)) * (a^(-n))/(a^(-m)) = ((a^(n-m)) * (1/a^n)/ (1/a^m) =

a^(n-m) * 1/(a^n * (1/a^m)) = a^(n-m) * 1/(a^n / a^m) =

a^(n-m) * 1/ a^(n-m) = 1

2011. okt. 20. 14:58
Hasznos számodra ez a válasz?
 6/6 A kérdező kommentje:
köszönöm:o
2011. okt. 20. 22:12

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!