VABCD szabályos négyoldalú gúla, amelyben AB = 6 cm és a VAC háromszög területe egyenlőaz alap területének felével, VO=3gyok2 a) Igazold, hogy a (VAD) és a (VBC) sík által alkotott szög szinusza (2gyok2)/3?
Figyelt kérdés
2024. márc. 10. 14:06
2/8 anonim válasza:
Na még egyszer próbáld meg rendesen leírni a feladatot!
4/8 A kérdező kommentje:
VABCD szabályos négyoldalú gúla, amelyben AB = 6 cm és a VAC háromszög területe
egyenlőaz alap területének felével.
a) Igazold, hogy VO = 3V2 cm, ahol {0} = AC metsze BD!
b) Igazold, hogy a (VAD) és (VBC) síkok által bezárt szög szinusza egyenlő (2gyok2)/3?
2024. márc. 10. 14:35
5/8 A kérdező kommentje:
Az a pontját sikerült megoldanom
2024. márc. 10. 14:35
6/8 anonim válasza:
F: AD felezőpontja
H: BC felezőpontja
A keresett szög: FVH< = fi
VH = 3*sqrt(3)
sin(fi/2) = OH/VH = sqrt(3)/3
cos(fi/2) = VO/VH = sqrt(6)/3
sin(fi) = 2sin(fi/2)cos(fi/2) = 2*sqrt(2)/3
7/8 A kérdező kommentje:
Az utolsó számításnál miért jön be előre az hogy 2-szer ?
2024. márc. 10. 15:04
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!