A mennyezethez rögzített, D = 50 N/m rugóállandójú rugó alsó végére m = 0,5 kg tömegű testet rögzítünk, majd a testet a rugó nyújtatlan állapotában elengedjük. Mekkora maximális sebességet ér el mozgása során a test?





1. Gyorsulási szakasz: A nyújtatlan rugóra (ekkor h = 0 m) akasztott test addig gyorsul, amíg a súlyerő meghaladja a rugóerőt: G = m*g > D*h
A h = m*g/D gyorsulás szakasz alatt az m tömegű testre F_gyorsító = G – F_rug = m*g – D*h erő hat.
2. Mozgási energia: E_kin = (F_gyorsító,min+ F_gyorsító,max)/2 * h = (0 + m*g)/2 * h =m^2*g^2/(2D) = 0,25 J
3. Sebesség: v = gyök(2E/m) = 1 m/s





Másfajta megoldás is van. A periódusidő T=2pi*gyök(m/D).
A körmozgás-anaéógia szerint a maximális sebességre a v=R*2pi/T formula érvényes. R pedig a maximális megnyúlás R=m*g/D.
Tehát v=m*g*2pi/(D*T).
A periódusidő képletét visszaírva:
v=m*g/(D*gyök(m/D))=m*g/gyök(m*D)=g/gyök(D/m)=g*gyök(m/D)
Behelyettesítve:
v=10*gyök(0,5/50)=1m/s.





Ugyanez számokkal:
A körmozgásos analógia értelmében, egyensúlyi helyeztben, 10 cm zuhanás után lesz a sebessége a legnagyobb. Méghozzá éppen annyi, amennyi egy 10cm sugarú körön való egyenletes körmozgáskor 1g (maximális/elengedéskori) centripetális gyorsulást igényelne.
: a=v^2/r
értelmében
: v=sqrt(10*0.1)=1m/s.
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!