Vektorok szorzata álatalánosan felírva?
2017. jan. 14. 10:29
1/4 anonim válasza:
a×b=c Az a és b vektorok, a c mátrix. Ez a vektoriális szorzat. Kompomnensenkénti szorzat, a(i) és b(k) szorzata a c(i,k).
a*b=c Az a és b vektorok, a c egy skalár. Ez a skaláris szorzat. A komponensenkénti szorzatokat összeadjuk.
2/4 dq válasza:
axb =
(a1 ; a2 ; a3) x
(b1 ; b2 ; b3) =
(a2b3 - b2a3 ; a3b1 - b3a1 ; a1b2 - b1a2)
(ez egy 3 koordinátájú vektor)
skalárszorzat van magasabb dimenzióban is, ott
<a,b> = sum a_ib_i = a1b1 + a2b2 + a3b3
(ez egy szám)
3/4 anonim válasza:
Az első keveri a vektoriális szorzatot a Descartes-szorzattal. A vektoriális szorzat:
(a1,a2,a3) x (b1,b2,b3) = (a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)
4/4 A kérdező kommentje:
Köszönöm, dobtam a zöld kezet mindenkinek:)
2017. jan. 14. 13:45
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!