Feladat: Keress olyam prímszámot, hogy a rá következő 100-dik pontosan 2013-mal legyen nagyobb! Hogyan?
P<SUB>n</SUB> + 2013 = P<SUB>n+100</SUB>
Használhatsz számítógépet (Excel,internet,programok), de programot nem ír(at)hatsz!
Mivel a kettes kivételével mindegyik prímszám páratlan, ha hozzáadsz 2013, semmiképp nem kaphatsz prímszámot.
Ezután már csak a 2 kell megnézned, ha hozzáadsz 2013-at, 2015-öt kapsz, ami megint csak nem prímszám, úgyhogy ezekkel a feltételekkel nem találhatsz prímpárokat
"Az 1. válasz nem jó. Nem az volt a feladat, hogy a következő prím legyen 2013-mal nagyobb, hanem hogy a rákövetkező SZÁZADIK prím legyen ennyivel nagyobb."
Igen ám, de az a századik is páratlan lesz, tehát nem lehet 2013 a különbségük.
Tényleg csak akkor van megoldás, ha a kiindulási prímem a 2.
2+2013=2015, nem prím. Tehát nem is a 2-re rákövetkező századik prím. Más prímpár meg szóba sem jöhet a páratlan különbség miatt.
Ez alapján az #1 jó. :)
Sajtoskifli és Wadmalac is O.K.
Még jó, hogy nem 2012 volt a kérdésben! :)
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!