Egy új (? ) elméletem van a 4D-ről! Van benne valami?
A bizonyítás röviden ez:
Ha a 3D-t (2D-t, 1D-t) egy sík mentén elvágjuk, a vágás mentén marad egy 2D-s (1D-s, 0D-s) tér. Ha a mintát követjük, a 4D-t egy sík mentén elvágva 3D-s teret kapunk! Ez 2 dolgot vet fel:
1. A dimenziók egyfajta tömörített fájlok, amik a 2D síkjában foglalják magukba az n-1. dimenziót! Tehát a 4D a 2D síkjában tárolja a 3D-t stb.
2. Igazából a dimenziók száma VÉGTELEN is lehet, mert ugyanígy igaz, hogy az 5D a 2D síkjában 4D-t tárol stb.
A kérdéseim:
- Kitalálta ezt már valaki előttem? (Szinte biztos vagyok benne, bár csak ehhez HASONLÍTÓ írásokat találtam a 4D-ről...)
- Van-e bármilyen hiba az elméletemben?
- Tudnék esetleg a témában szakemberekkel beszélni?
A válaszokat előre is köszönöm!
14/F
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
Na, ha már ennyire belemerültünk ebbe a témába, akkor régebben volt a többdimenziós mértani testekkel kapcsolatban egy kérdésem:
http://www.gyakorikerdesek.hu/tudomanyok__alkalmazott-tudoma..
Ha esetleg valakit érdekel, hogy hogyan lehet kiszámítani egy akárhány dimenziós „gömb“, „kocka“, „szabályos tetraéder“ paramétereit („térfogat“, „felület“, csúcsok, élek, oldallapok, stb. számát).
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
A vége butaság, ahogy van.
Az eleje meg azért nem stimmel, mert mindent síkkal akarsz elvágni, és ez csak 3 dimenzióig működik. 4 dimenziós testet síkkal (pl. késsel) elvágni nem lehet! Ugyanúgy, ahogy 3 dimenziós testet sem lehet elvágni egyenessel (pl. tűvel).
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
ez az elvágunk egy 4Ds teret egy síkkal dolog nem világos számomra (nem is fogja két külön részre vágni), az meg főleg nem , hogy egy sík mentén hogyan kapunk 3Ds teret, de arra jól ráéreztél, hogy akármennyi dimenzió lehet (akár végtelen számú is), és a kisebb dimenziós terek beágyazhatóak nagyobb dimenziósokba.
Ez matematika, vektortér vagy esetleg lineáris tér néven érdemes ilyesmiknek utánanézni.
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!