Ha egy gömböt rendezettlen módon megtöltünk mágnesporral, akkor az kívülről úgy viselkedik, mint egy mágneses monopólus?
Nem.
Mivel a mágnespor minden eleme mágneses dipólus, ezért 2 dolog történhet:
- vagy van benne valamilyen eredő mágnesesség: ekkor a gömb gyengén mágneses dipólus lesz,
- vagy sikerült pont úgy feltölteni, hogy minden kiegyenlíti egymást: ekkor a gömb kívülről semleges lesz.
Monopólust így nem lehet létrehozni.
Deviszont, ha nem mágnásport használsz, hanem a jó megszokott mágnesrudakat, amik rendesen vannak rögzítve, akkor igen, monopólust kapsz.
...vagy vágj félbe egy mágnest... :D
A félbevágott mágnesből is 2 dipólus lesz.
Egészen atomokra is darabolhatod - az még mind dipólus.
Mert a másik pólus befelé néz, nem tűnt el.
Idézet netről:
"A mágneses tér forrásmentes, azaz bárhogyan is veszünk fel a térben egy zárt felületet, a felületetet metsző mágneses erővonalak algebrai összege nulla (mágneses fluxus ). Ez Maxwell III. törvénye. Ennek oka az, hogy nem létezik mágneses monopólus."
Valahol itt az interneten olvastam egy cikket arról, hogy elemi dipólusok átrendezésével sikerült létrehozni egy látszólagos mágneses monopólust (valami hasonló trükköt alkalmaztak, mint amire Te is gondolsz, csak precízebb kivitelben). Itt van róla a rajz:
Itt meg a cikk:
Ez meg egy másik cikk a mágneses monopólusról:
Ez is ilyen:
Ez sem monopólus (legfeljebb nagyon pici távon tűnik annak): látható, hogy minden (+) pólushoz ott van a (-) is, csak messzebb.
Lényegében ugyanígy viselkedik egy hosszú mágneses rúd is.
További kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!