Hogyan lehet megmérni a Föld vagy bármilyen égitest tömegét vagy erre becslést adni?
A legpontosabb, hogyha ismerjük a sűrűségét és a méretét. Ez a naprendszer bolygóinál, legalábbis a közelebbieknél még csak-csak megoldható.
De egy messziu, pl. exobolygónál nem. Ott a méretet abból tippelik, hogy mennyivel halványítja el a csillagát mikor áthalad előtte. Illetve próbálják a csillagjára kifejtett gravitációs hatásából is a tömeget következtetni.
Gravitáció. :)
Föld esetében: ha van egy tárgyad, ismered a tömegét (erre egyébként becslésnél nincs is szükséged, de mindegy, nem akarlak megzavarni), ismered a Föld sugarát, ismered a tömegvonzás törvényét és a gravtációs állandót. Elengeded, megnézed milyen gyorsulással esik a Föld fele...
Az általános tömegvonzás szerint a testre ható erő mitől függ?
A két test (Föld és a tárgy) tömegétől és a két test tömegközéppontjának távolságától (ez nagyjából a Föld sugara)... (Ezek szerepelnek az egyenletben (F=GMm/r^2), másra nincs is szükségünk)
Szóval ha a gyorsulást meg tudod mérni, akkor F=ma alapján az egyetlen ismeretlened az egyenletben a Föld tömege lesz. (ma=GMm/r^2).
Többi égitestnél ugyanígy.
A Holdról tudjuk hogy mozog a Föld körül, a Föld a Nap körül... ebből a Hold és a Nap tömege már meg is van. A többi bolygót ugyanígy.
Persze ez így egy eléggé egyszerűsített leírásmód, de gondolom komoly levezetésekre, meg arra, hogy pl. a Föld inhomogenitása mennyire befolyásolja az első levezetés pontosságát, nem vagy kíváncsi. :)
Remélem érthetőre sikerült, ha nem, akkor bocsi.
"ismert a sűrűsége és a geometriája, ez után lehet a tömegét is meghatározni. mire gondolsz pontosan? nem igazán értem."
A Sűrűség már származtatott mennyiség. A tömegből határozták meg, szóval ez így nem teljesen jó eljárás. Amit a második hozzászóló írt ott az igazság. A tömegvonzás az, ami lehetővé teszi a Föld vagy bármely égitest tömegének relatíve pontos meghatározását; Két ismert tömegű test között fellépő vonzóerőt vetik össze a test súlyával.
maci
12:41
nna akkor vegyük át.
Egyik változat (ami szerinted abszolút baromság).
Mérjük a gyorsulást, ismerjük a gravitációs állandót, ismerjük a távolságot, a test tömegét nem használjuk, hiszen kiesik az egyenletből. ... és kiszámoljuk a Föld tömegét.
Második változat.. megmérjük az erőt, ami ugyebár a test súlya lesz... a gravitációs állandót megintcsak ismejük
Ismeretlennek marad ugyebár a Föld tömege... meg ebben az esetben szükség lenne a tárgy tömegére is... amit hogy is mérünk meg? Mert mérlegre rakni ugye nem tudjuk, hiszen azzal nem kapunk semmilyen új infót.
Egyébként nem teljesen értem, a "MINDEN"-t miért kellett így "kiabálva" írni.
Mióta probléma, ha egy mérésnél többször kapjuk ugyanazt az eredményt, pláne ha a Föld tömegéről van szó, ami viszonylag ritkán változik jelentősen.
Ha nem lenne egyforma... akkor az azt jelentené hogy van még egy plusz tényező (mint erő mérésénél a tömeg), ami befolyásolja az eredményünket, ergó megnő a hibalehetőség...
Ha szerinted baj, hogy nincs ilyen plusz tényező, akkor javaslom, hogy a kísérleti fizika rejtelmeiben mélyedj el egy kicsit.
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!