Mekkora hibahatárral lehet derékszöget szerkeszteni bármilyen technikával?





Hát… Az igaz, hogy különböző méretekben különböző pontossággal megy, és „normális emberi” skálán a „minél nagyobb, annál pontosabban megy” elv érvényesül, tehát lehet, hogy a kérdezőnek ezt is érdemes lenni specifikálnia, de azért nem nagy dolog pozitív korlátot találni a pontosságra.
Azon gondolkozom, hogy talán a LIGO karjainál kéne megnézni, mekkora a tűrése a derékszögnek (már ha tényleg derékszögűre tervezték, mert amilyen agyament szerkezet, simán el tudom képzelni, hogy valami miatt direkt picit másmilyenre kellett).
Illetve az nem tudom szerkesztés-e, ha egy csillagászati teleszkópot elforgatnak pontosan 90°-kal. Ezt talán inkább a derékszög mérésének a pontosságára lenne már inkább jó példa.
Ugye a mi számít szerkesztésnek, azt lehet tágabban és szűkebben is értelmezni. (Csak euklideszi szerkesztést engedünk körzővel és jelöletlen vonalzóval, szabad-e jelölt vonalzót használni, szabad-e akár teodolitot vagy state-of-the-art gyártástechnikákat,… Az elkészült szerkezetnek/rajznak mennyire kell masszívnak/tartósnak lenni,…)
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!