Annyi elektromágneses jel van az éterben... hogy hogy nem zavarják egymást?
Ez most 100Hz vagy 100 kHz?
Amúgy valószínűleg nem, de nem véletlen küldünk *szinte* mindent digitálisan és csomagkapcsoltan.
Mert 1-2 bit flip javítható kódolástól függően. Ha ennél több van akkor újra lehet kérni a teljes csomagot
Analógnál meg szívás van.
„Az érdekel, hogy ha az egyik vevő antennája a 100 Hz-re van állítva, a másik meg 100.001 Hz-re, akkor nem fogják-e egymás jeleit - mint zaj – venni?”
Módosítsuk inkább így: „ha az egyik vevő antennája 100 kHz-re van állítva, a másik 100,001 kHz-re, akkor nem fogják-e egymás jeleit – mint zaj – venni?”
Te itt most két külön vevőre gondolsz, azok nem zavarják egymást még, akkor sem, ha azonos frekvencia vételére vannak beállítva. Nem fogják egymás jeleit venni, hiszen rádióvevőkről írsz, nem rádióadókról. Bár annyi lehetséges, hogy a frekvenciaváltós készülékek helyi oszcillátora sugározhat valamennyire. Ez pedig a közelében levő másik rádiót zavarhatja, de csak akkor, ha az egyik vevő éppen a másik vevő helyi oszcillátorának frekvenciájára van hangolva.
Jó, akkor legyen 100 kHz és 100.001 kHz.
Ahhoz, hogy az éterben ott legyen a két rádiójel, ahhoz mindkettőt sugározni kell. Ha tudom számítógéppel digitalizálni a két jel összegét (szuperpozícióját?), akkor vannak-e olyan informatikai módszerek, amivel el tudom választani a kettőt? Azt tudom, hogy analóg áramköröknél (sávszűrés) a jelerősség skálát "csak" exponenciálisan lehet ki kivágni (dB skálán lineárisan) a frekvencia függvényében. De ennél van-e jobb módszer, akár a megfelelő szoftvereket kiválasztva?
„Ebből a szempontból hogy működik a frekvenciaszűrés, mik a határai, pontosabban mennyire lehet tisztán egy adott frekvenciájú jelet kiszűrni?”
Ebben a kérdésben két vevőre gondolsz. A probléma nem így szokott felmerülni, hanem úgy, hogy egy rádióvevő mennyire képes „elválasztani” egymástól a frekvenciában közel eső rádióadók jeleit. Ezt úgy nevezik, hogy mennyire szelektív. Ennek határait a vevőkészülékben levő rezgőkörök vagy egyéb fajta szűrők mennyisége, kapcsolástechnikája szabja meg. Azért nem lehet ezt a végtelenségig fokozni, mert az amplitúdó modulált adásoknál ettől függ az átvihető hangfrekvenciás sáv felső határa. Például a középhullámú adók frekvencia távolságát 9 kHz-ben állapították meg. Ennek a fele, 4,5 kHz lehet a legnagyobb átvitt hangfrekvencia. Ha ezt sokkal tovább fokoznák, akkor egyrészt jóval nehezebb lenne a megfelelően szelektív készülékeket megépíteni, másrészt az amúgy is alacsony felső hangfrekvenciás határ is jóval lejjebb tolódna.
A digitális és szoftveres része távol áll tőlem, arra esetleg, majd más válaszol.
Most, hogy ezeket tisztáztuk, rátérnék az igazi felvetésemre:
A mai rádiózás a trigonometrikus frekvenciákon alapul, amik alatt olyan idő-intenzitás f (bázis)függvényeket értek, hogy: f(t + h) = f(t), ahol h a hullámhossz. De mi lenne, ha a bázisfüggvény hullámhosszát nem lehetne egy paraméterrel jellemezni, hanem valamilyen erőszakos fraktálfüggvényünk lenne, mint a Weierstrass függvény ( [link] ), és nem adható meg hozzá a trigonometrikus függvényekre amúgy jellemző hullámhossz?
Jól gondolom, hogy az ilyen jelek zavarnák az összes többit?
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!