Lehetséges, hogy ilyen az univerzum? Lent.
A térnek elvileg nincs határa, de ettől még lehet, hogy mégis van egy meghatározott mérete? Ezt úgy kell elképzelni, mint például az arcade Mario játékban, hogy amikor elérjük a végét (ez így most elég hülye megfogalmazás, mivelhogy annak nincs meghatározott helye), akkor visszakerülünk (ez is hülye megfogalmazás, mert valójában ugyanott maradunk) az elejére?
Tehát ha elég messzire látnánk, akkor azt látnánk, hogy végtelenszer ismétlődik minden, de valójában csak a fény is ugyanígy "körbejár", és ezért látjuk így.
Mit gondoltok, lehetséges?
Igen, jelenlegi tudásunk szerint lehetséges.
Ehhez arra lenne szükség, hogy a térnek a legnagyobb méretskálákon legyen valamekkora pozitív görbülete. Ugyanis ekkor a világegyetem egy hipergömb lehetne, kb. úgy viselkedne, ahogyan leírtad.
Végeztek már ezzel kapcsolatos méréseket. Ezekből úgy tűnik, a térnek vagy egyáltalán nincs görbülete (és akkor egy szép sima, végtelen nagy világegyetemünk van), vagy pedig olyan kicsi a görbület, hogy a jelenlegi műszereink képtelenek azt kimutatni.
Ha a legnagyobb lehetséges görbülettel számolunk, amit a mérés hibája még megenged, akkor a becslések alapján legkevesebb 828 milliárd fényévet kellene utazni, hogy visszatérjünk ugyanoda, ahonnan elindultunk. (Ez hatalmas távolság, a látható világegyetem sugarának, 13.8 milliárd fényévnek a 60-szorosa.)
Ha barátkozol az angollal, itt egy videó, amiben szépen körüljárják a témát.
Ahan, szóval egy 4 dimenziós gömb volna a tér, aminek a 3 dimenziós felületén vagyunk. Akkor tegyük fel, hogy képesek lennének arrébbmenni a 4. dimenzió mentén.
És ez az!! Ez maga az idő! Azért tűnik úgy, mintha tágulna, mert folyamatosan haladunk kifelé a... Hogy hívják ezt geometriában, gömbhélyak? Na de értitek mit akarok mondani.
Tehát elvileg már minden előre el van rendelve.
#3-as válaszolónak
Igen, a terünk egy 4 dimenziós gömb felszíneként viselkedne, de ennek az időhöz nincs köze, ilyen szempontból az egy 5., külön dimenzió volna.
Az egészet egyszerűbb alacsonyabb dimenzió példáján elképzelni.
Van egy gömböm, aminek a felszínén sétál egy 2D-s emberke. Ha ez egy jó nagy gömb, vagyis a görbülete kicsi, akkor az emberke nehezen tudja megkülönböztetni a tökéletes síktól. Mégis, ha elindul egy irányba, egyszer visszajut a kiinduló helyére. A 2D-s emberke számára nincs értelme annak, hogy fölötte és alatta. A gömb felszínén belül és azon kívül nincs semmi. Ezek olyan pontok, amikbe lehetetlenség, hogy a 2D-s emberke eljusson, mert az emberkénk csak a gömb felszínén van értelmezve. Az idő pedig az emberke térbeli pozíciójától független, külön dimenzió.
Velünk hasonló a helyzet, csak 3D-sek vagyunk.
Az előre elrendeltségtől pedig szerintem a kvantummechanikai határozatlanság miatt nem kell tartani, de az már egy másik történet.
#2-es válaszoló voltam
#4-esnek
Mellékesen, a fantáziának igaziból van határa, az emberi agy neuronhálózatának végességéből adódóan. De a lényeg az, hogy fantázia nélkül nem jutottunk volna el arra a fejlettségre, ahol most vagyunk. Ugyanis mielőtt megvalósítottunk valamit, először el kellett azt képzelnünk.
Abban van egy kis igazságod, hogy nem minden fantáziálás, képzelgés célravezető. Mondjuk: tegnap óta nem láttam a szomszéd nénit, elvitték a földönkívüliek? Lehetséges, hogy így van, de léteznek sokkal hétköznapibb magyarázatok is.
Annyi bizonyos részemről, hogy matematikailag az egyenletes-végtelen világegyetem és a hipergömb egyformán elegáns gondolat, és egyik sem zárható ki (még), tehát a kérdést helyénvaló volt feltenni. :)
#2-es
"Akkor tegyük fel, hogy képesek lennének arrébbmenni a 4. dimenzió mentén.
És ez az!! Ez maga az idő!"
Gyakori hiba az időt negyedik térdimenziónak nézni.
Nem.
Ha van negyedik térdimenzió, az ugyanolyan, vagy legalábbis erősen hasonló, mint a másik három (esetleg görbülete más).
Az idő egy más téma.
Az igaz, hogy kezelhető megfelelő koordináta-rendszerben a térhez hasonlóan, sőt, azzal szinkronban, de attól még nem térdimenzió.
#1
"Úgy értve, hogy még a semmi sincs."
Akkor mi van, ha semmi sincs? Na ez egy kérdés.
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!