Egy háromszögnek csak oldalai hosszat ismerve ki lehet e számítani a területet?
Ha mind a 3 oldal megvan, akkor ott a színusz tétel.
Az oldalak úgy aránylanak egymáshoz mint a szögek.
a:b:c = sin alfa:sin béta: sinus gamma.
Innen kifejezed az egyik szöget.
Majd: Koszinusz tétel
c a négyzeten = a négyzet + b négyzet - abcos gamma
ha mind a 3 oldal megvan akkor nem tud sinus tétellel számolni! Mivel nem biztos,hogy a háromszög derékszögű, egyenlő oldalú vagy egyenlő szárú. sinus tételben két oldal és két szög aránya van, vagyis ebből 3 adatnak kell meglennie, ami jelen esetben nem adott!
cosinus tételnél pedig 3 oldal és egy szögből ha már 3 valamelyik adat megvan,akkor lehet cosinus tételt használni és kiszámolni a 4.adatot!
Igen, a Héron-képlettel.
Ha "a", "b", "c" a háromszög oldalai, és "s" a kerület fele ((a+b+c)/2), akkor:
T = négyzetgyök(s*(s-a)*(s-b)*(s-c))
Pontosan!
Éppen ezért csodálkozom, hogy idáig nem nyitottad ki a függvénytáblázatot: központi helyen van benne.
Amúgy meg el is lehet gondolkodni, hogy ha megvan a 3 oldalad (mondjuk 3 pálcika) - abból hányféle háromszöget tudsz összerakni? 2 félét? 5 félét? 100 félét? A fenét: csak 1 félét. Akkor pedig ki is számolható ennek minden adata csak az oldalakból is!
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!