Mennyi dimenziót ismerünk? És mik azok?
Ezeket tudom:
2D xy tengely
3D XYZ tengely
4D XYZ tengely + idő (akkor az fps játékok nem 4D-sek?)
6D szellem látás (?)
Mi az első és a többi dimenzió, s hogyan kell elképzelni?
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
6D szellem látás?
Rossz kategóriába jött a kérdés...
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
A dimenzió kiterjedést jelent
az első dimenzió a pont csak egyetlen kiterjedéssel. A mai ismereteink szerint a világot 4 dimenzióra oszthatjuk amiben a 4 dimenzó különleges szerepet tölt be hisz látszólag csak egy irányban mozoghatunk benne. Az FPS játékok általában 2dimenziós világban imitált 3 dimenziós világban játszódnak. A 3D-s TV-k szemüvegek terjedésével lesz igazából 3 dimenziós a kép így a játék 4dimenzióba kerül.
Ezen fellül a dimenzókon felül a matematikában még léteznek magasabb dimenzóok amit az határoz meg hogy hány adatra "vektorra" van szükség hogy egy pont helyét egyértelműen meghatározhasuk, pl.: egy adat matrixban.
Ezeknek a dimenzióknak az gvilágon nincs semmi közük a "szellemlátáshoz" vagy aura látáshoz és egyebekhez... .Ezek csupán hanyag és lebutított értelmezések logikátlan zsgyvaságai.
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
Matematikailag 11 és 13 dimenziós terek is leírhatóak.
Folynak is erre irányuló elméleti fizikai és matematikai kutatások.
Az más kérdés, hogy a mi elménkkel ez nem fogható fel és érzékeinkkel nem érzékelhető.
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
Fizikában dimenzió = Független fizikai tartalom. Pl.: liter, kilogramm, másodperc stb.
Ha matematikailag közelítjük meg, először definiáljuk a következőket szépen sorban:
Vektor: irányított szakasz
Lineáris kombináció: Az a1, a2,... ak vektorok lineáris kombinációján egy c1*a1 + c2*a2 + . . . + ck*ak alakú vektort értünk, ahol c1, c2, . . . , ck valós számok. Azt mondjuk, hogy a v vektor előáll az a1, a2,... ak vektorok lineáris kombinációjaként, ha vannak olyan c1, c2, ... ck valós számok, hogy v = c1*a1 + ... + ck*ak.
Lineárisan független vektorok: Azt mondjuk, hogy egy v
vektor lineárisan független az a1, a2,... an (n>=1) vektoroktól, ha v nem fejezhető ki e vektorok lineáris kombinációjaként. Azt mondjuk, hogy az a1, a2,... an (n>=2) vektorok lineárisan függetlenek ha e vektorok egyike sem fejezhető ki a többi lineáris kombinációjaként. Ha legalább egyikük kifejezhető a többi lineáris kombinációjaként, azaz legalább egyikük lineárisan függ a többitől, akkor e vektorokat lineárisan összefüggőknek nevezzük. Az egyetlen vektorból álló vektorrendszert lineárisan függetlennek tekintjük, ha a vektor nem a zérusvektor
Altér: Az R^n tér vektorainak olyan részhalmazát,
mely zárt a vektorok skalárral való szorzásának és a vektorok összegének műveletére, az R^n alterének nevezzük.
Bázis: Az R^n tér egy alterének bázisán vektorok
olyan halmazát értjük, mely
1. lineárisan független vektorokból áll és
2. kifeszíti az alteret.
Dimenzió: Az R^n tér egy A alterének dimenzióján
egy bázisának elemszámát értjük
1D = 1 elemű a bázis, az alteret megkapjuk, ha vesszük a báziselemek összes lineáris kombinációját, de mivel csak 1 vektornak vehetjük, ezért csak skalárszorzás jöhet számításba. Tehát magyarán, az origóból induló vektorunknak, ami adott irányba mutat, megszorozva egy számmal, változik a nagysága. Ha végtelen különböző számmal szorozzuk meg, egyenest kapunk. Így az egy dimenziós altér egy egyenes. 2D esetén 2 vektorunk van, így nem csak skalárszorzás van, hanem a 2 vektorunkat össze is tudjuk adni, ekkor síkot kapunk, stb.
Ha egy pontot nézünk, akkor a bázisunk üreshalmaz, vagy nullvektor alkotja, tehát a vektorunk kezdő és végpontja ugyanaz, az origó.
tl;dr
0D pont
1D egyenes
2D sík
3D tér
4D 4 dimenziós tér
nD n dimenziós tér
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
Pont: 0D (Sehova nem lehet haladni.)
Szakasz: 1D (Két oldalra lehet haladni.)
Sík (négyszög, kör, stb...): 2D (Két oldalra, fel és le lehet haladni.)
Test (kocka, gömb, stb...): 3D (Két oldalra, fel és le, előre és hátra lehet haladni.)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
Itt láthatsz 4 és 5D-s alakzatot is.
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!