Mikor merőleges vmi vmire?
Valóban, a Bolyai-geometriában nem biztos, hogy létezik olyan konkrétan ez a fogalom, mint az Euklideszi-ben.
Ugyanis pl. ha két fénysugár(a fény fotonjai egyenes vonalban terjednek) útrakel egy egymásra merőlegesnek tűnő helyzetből az univerzum két pontjából, akkor amire keresztezik (ha egyáltalán keresztezik) egymást már több mint biztos, hogy nem merőleges szögben metszik egymást, ahogy elhaladnak a csillagközi objektumok közt. (A fény is a térben terjed, de a gravitáció hatására a tér maga is torz (sőt maga a tömeg hozza létre!)). Két "kacskaringósan" nem csak síkban görbe vonal hogyan lehetne merőleges egymásra?! - Legfeljebb, úgy ha épp egy-egy megfelelő nagyon rövid szakaszuk fedi egymást, közelíthet a merőleges "FOGALMÁHOZ"! Valójában a merőleges is csak a mérési határok közt tekinthető annak, mindig van egy hibahatár, amin túl már nem tekinthetjük a merőlegest, merőlegesnek. Szerintem a Jóistenen kívül még senki sem tudja, mi is az a valódi merőleges!
A magát hű de okosnak gondoló Bolyai-geometriás válasozlónak:
attól hogy nem tudsz a valóságban teljesen pontos merőlegest szerkeszteni, vagy fénysugarak nem tudják egymást pontosan merőlegesen metszeni, attól még pontos merőlegességi reláció létezik. És ha már ennyire matematikusan akarjuk közelíteni a dolgot, akkor két vektor akkor merőleges egymásra, ha Euklideszi (belső) szorzatuk 0.
Előző hozzászóló: Most durrantottad szét az önelégültség-lufimat!:DDD
Nem kellett volna matekkal példálóznom (nem vagyok olyan jó belőle). Legalább most új infóhoz jutottam a témakörben. Mindig tanul valamit az ember.:)
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!