Van olyan software, amivel sok képből, amit az égbolt ugyanazon területéről készítünk, összerakható egy nagyobb felbontású?
Ha egymás mellettiek a képek kis átfedéssel, akkor az Arcsoft Panorama Maker többféle típusú panorámát tud összeállítani (függőleges, vízszintes, kör). Mozaik és gömbpanoráma Photoshopban rakható össze.
Ha csillagjárást akarsz bemutatni, amikor fixen 1 területről készül a kép, akkor azt vagy Photoshopban tudod összerakni, vagy itt adnak tanácsot még:
Képszerkesztő programokkal (Photoshop, Fireworks) tudnád növelni a felbontást. Ezzel csak egy baj van. A hiányzó képpontokat a szoftver megpróbálja kitalálni a mellette lévő képpontok alapján, és így növeli a felbontást. Azonban ha ezt a képet nagyítod megint csak az lesz a végeredmény amit már előttem is írtak : elmosódott lesz a kép.
Ha nagy felbontású képet szeretnél akkor használj olyan készüléket ami megfelel az elvárásaidnak. Használható szoftveres eljárás nem igazán létezik, ipari vagy katonai szoftverek lehet, hogy léteznek erre, de ahhoz meg nem lehet hozzájutni.
Már elnézést de a kedves kérdező ír nagy baromságokat. Attól, hogy tovább exponálsz nem fogsz nagyobb felbontású képeket kapni, mint ahogyan attól sem, hogy statikus nem mozgó témáról készítesz több felvételt.(Megjegyzem a csillagos ég fotózása a földről ilyen technikával eleve, csak a föld forgásával megegyező szögsebességgel forgó állványról lehetséges, a szenzor által létrehozott zaj (főleg színzaj) csökkentésére használják ezt a technikát nem pedig a felbontás növelésére.)
Egyébként eleve összekeveritek a felbontást a képpontszámmal, de ez itt most lényegelen. Tehát még egyszer: sem a felbontást, sem a képpontszámot nem tudod növelni, ha az adott kép pixelei megegyeznek(tehát mozgatás nélkül, ugyanarról a témáról készültek), ha pedig elmozdítod, az már panorámafotó.
Miért ne lehetne növelni a felbontást?
Ha mondjuk tudom, hogy a témán a pontok relatíve helyzete fix, akkor újabb képet készítve, a bemozdulás (akár a gép, akár téma miatti) a pixelek egy kicsit elmozdulnak. A korábbi képek alapján azonban ki lehet elvileg találni, hogy mondjuk 0,6 pixelnyit mozdult el a kép, mert az autokorrelációs függvénynek mondjuk ott van maximuma. Ekkor viszont tudok generálni egy nagyobb felbontású képet, amiben elvileg több infó van. Sok a hibalehetőség, de sok képpel és jó algoritmussal elvileg lehet növelni a felbontást.
Egyébként a mit csinál pontosan a StarStaX program, nem egészen értem?
Oké, tegyük fel, hogy tudjuk mennyit mozdult el és ismerjük a különböző képek között eltelt időt, a szögsebességet amivel elfordult. Ha a mozgás statikus, akár a következő képet is le tudjuk generálni megfelelő algoritmussal és teljesítménnyel, de a felbontás szempontjából ez teljesen irreleváns, főleg, hogy még mindig pixelszámról beszélünk, a kép fizikai felbontása kizárólag interpolációval növelhető - ami ugye algoritmustól függően minőségromlással jár.
A pixelszám amit felbontásnak gondolsz (x*y pixel ahol x a kép szélessége, y pedig a kép magassága) szintén növelhető interpolációval de az általad említett módon NEM. Az általad említett információk felbontás szempontjából irrelevánsak, még akkor is, ha a téma teljesen statikus. Végletekig leegyszerűsítve: ha fogsz egy vázát, és teljesen azonos beállításokkal lefényképezed mondjuk egymás után nyolcvanötször akkor sem fogod tudni a szenzor fizikai felbontásánál nagyobbra változtatni a digitális végtermék felbontását.
DE, pont erről beszélek. Feltételezve, hogy a váza egzaktul mozdulatlan és én elég messze vagyok, hogy síknak tekinthessem a képet. De minden fényképezésnél feltételezek egy kis eltérést, azaz egy x,y irányú mondjuk pixel nagyságrendjébe eső (vagy igazából bármekkora, de nem pont egész pixelnyi) elmozdulást, akkor a képek plusz információt adnak.
Legyen egy végletekig egyszerűsített példa:
Például van két objektum a képen, amik mondjuk egy-egy egymástól távol lévő pixelbe esnek bele. Ha a képen csak ez a két pixel van, akkor azt hogy az objektum a pixelen belül hol van, nyilván nem tudom, azaz a felbontás pixelnyi. A két pont távolságát is +- pixelre tudom.
A távolságban a legrosszabb esetben 2*sqrt(2) eltérés is lehet két lehetséges megvalósulás között. Ha viszont készítek sok képet, akkor kiderül, hogy néha nem ugyanabba a pixelbe esik az objektum, sőt relatíve se lesz mindig ugyanolyan a két pixel elhelyezkedése, mert az adott fix (merev!) szakaszt, amit a két objektumunk megvalósít másképp lerakva máshogy esnek a végpontjai. Ennek a statisztikájából információhoz jutunk. Ha például a szakaszunk pont a két pixel legtávolabbi pontjai közötti távolság, akkor csak ritkán lesz pont a szóban forgó megvalósulás, mert legtöbbször közelebbi pixelekbe esnek. A statisztikai átlagból a szakasz végpontjainak koordinátáit pontosabban tudjuk meghatározni, mint egyetlen kép alapján. De igazából baromira nem értem mi nem világos.
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!