Ki tudna segíteni megoldani ezt a fizika feladatot?
a teljes útra felírhatjuk, hogy
s=s1+s2+s3
10 ezer m = a1/2*t1^2 + v0*t2 + [(-7/9)a1]/2 *t3^2 + v0
ahol v0-t keressük, egyébként ismerjük t1 t2 t3 illetve s összes-t
vagy az van, hogy nem találtam meg az egyenletrendszerben a másik egyeletet, vagy az, hogy paraméteresen megoldható, hogyha megadjuk vagy a1-et és akkor v0 kiadódik
szia.
úgy sejtem, ha egy sebesség-idő grafikonba (függőleges tengely a sebesség, vízszintes az idő) behúzod a sebességvonalakat, akkor egy ferde egyenest húzol az origóból jobbra fel irányba, aztán azt folytatva egy vízszinteset és végül jobbra le irányba az idő tengelyig megint egy egyenest. Így kapsz egy trapézt. A trapéz alapja maga a teljes időmennyiség (célszerű másodpercben megadni), az alappal párhuzamos oldal pedig a teljes idő mínusz a gyorsítás és lassítás idejének az összege. A sebesség-idő grafikonból tudjuk, hogy a közre fogott terület - jelen esetben a trapéz területe (váltsd majd át méterbe) - meg fog egyezni a megtett úttal. Illetve az ábrából azt is tudhatjuk, hogy a kapott trapéz magassága lesz nyilván a maximális sebesség, amiről a kérdés szól.
Szóval van egy trapézunk, aminek ismerjük a két párhuzamos oldalát és a területét, amiből egy pillanat alatt kiszámíthatjuk a magasságot.
A trapéz területképlete:
(a+c)*m/2
(630+470)*m/2 = 10000
1100*m = 20000
m = 18,181818
Tehát a sebességünk 18,181818 m/s, ami 65,454545 km/h
Bízom benne, jól számoltam.
Egy harmadik megoldási lehetőség egyébként, ha az egyenletesen változó mozgás szakaszait átlagsebességgel helyettesítjük. Ha a nyílt pályán a sebesség v, akkor az egyenletesen változó szakaszokon v/2.
Ezzel a gondolatmenettel az egyenesvonalú egyenletes mozgás általános iskolai összefüggése használható:
1.szakasz: s1=v1*t1 =0.5*v*t1
2.szakasz: s2=v*t2
3.szakasz: s3=v3*t3=0.5*v*t3
Összeadva ezeket:
s1+s2+s3 = v*(0.5*t1+t2+0.5*t3)
A teljes t idő ismert, és t2=t-t1-t3,ill. bevezetve az s=s1+s2+s3 jelölést:
s=v*[0.5*t1+(t-t1-t3)+0.5*t3]
A jobboldalt összevonva az egynemű tagokat:
s=v*[t-0.5*(t1+t3)], amiből a keresett nyilt pályabeli vonatsebesség:
v = s/[t-0.5*(t1+t3)].
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!