Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Hogy kell megoldani ezt a...

Hogy kell megoldani ezt a matekfeladatot?

Figyelt kérdés

logaB=logB/logA - A feladat szerint ezt a képletet kell használni a feladatok megoldásához.


A négy feladat így szól:


a, 2*3 (az x-ediken) = 54

b, 3*10 (az x-ediken) = 9000

c, 4,5*-2(a 2x-1-ediken) = 36

d, 5*7(a 2x-ediken)-100 = 40


Az első kettőt meg tudtam oldani, az a,-ra a válaszom 3, a b,-re 2. Nem használtam a képletet, gondolom ezek a könnyebbek voltak. Viszont nem tudom a képletet alkalmazni, és szerintem ezért nem nagyon tudok mit kezdeni az utolsó kettővel.


Így próbálkoztam velük:


c,

3*10^x=9000 (elosztom hárommal)

10^x=3000 (itt viszont megakadok)


d,

5*7^2x-1 -300=40 (+300)

5*7^2x-1=340 (/5)

7^2x-1=68



2017. máj. 6. 13:30
 1/2 anonim ***** válasza:

Kicsit összekavarodtak a betűk, ahogy elnézem:


10^x=3000 //logaritmálod

log(10^x) = log(3000) //Használod a log. azonosságot: log(a^b) = b*log(a)

x*log(10) = log(3000)

x = log(3000) = ~3,47


A másik feladatot viszont megváltoztattad.

De akkor nézzük a próbálkozásodat:


5*7^(2x-1)-300=40

5/7 * 7^(2x) = 340

7^(2x) = 476

49^x = 476 // logaritmálás

log(49^x) = log(476)

x * log(49) = log(476)

x = log(476)/log(49) = ~1,58


Vagy nem lehet számológépet használni?

2017. máj. 6. 15:07
Hasznos számodra ez a válasz?
 2/2 anonim ***** válasza:

A feladat az, hogy rendezd egy oldalra az ismert számokat, a másikra az ismeretlenes tagot.

Pl.: 3^x=27

Ebből felírod: log_3(3^x)=x=log_3(27)

A számológépek általában ismerik a 10-es és a természetes alapú logaritmust, a többit nem. Épp itt jó az a képlet, mert átvihető mindez bármilyen alapúra.

Tehát:

x=lg27/lg3, ahol lg a 10-es alapú logaritmus jele, ezt már a számológéped érteni fogja.

2017. máj. 6. 16:52
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!