Matek feladat ábra (? )

Figyelt kérdés

Egy 12 cm oldalhosszúságú négyzetet megforgatunk az egyik oldalával párhuzamos

szimmetriatengelye körül.

a) Mekkora az így keletkező forgástest térfogata és felszíne?

A felszínt egész cm2-re, a térfogatot egész cm3-re kerekítve adja meg!

Ugyanezt a négyzetet forgassuk meg az egyik átlóját tartalmazó forgástengely körül!

b) Mekkora az így keletkező forgástest térfogata és felszíne?

A felszínt egész cm2-re, a térfogatot egész cm3-re kerekítve adja meg!

c) A forgástestek közül az utóbbinak a felszíne hány százaléka az első forgatással

kapott forgástest felszínének?


Tudna valaki ehhez a feladathoz ábrákat készíteni? én nem tudok rájönni, hogy is jönnek ki..



2017. ápr. 24. 20:25
 1/1 anonim ***** válasza:
66%

Az első esetben a négyzetet "középen" forgatjuk meg, azaz végül kapunk egy 12 cm magas és 12cm átmérőjű hengert. Ennek térfogata h×r^2×pi=12×6^2×3,14=1357 cm3. Felülete pedig a két körlapból és a palástból fog állni. A körlap területe r^2×pi=113,1 cm2, míg a palásté (ami egy téglalap) h×K, ahol K a körlap kerülete, azaz 2r×pi=37,7 cm, azaz a palást területe 452 cm2.

Így a henger felülete a palást felülete és kétszer a körlap felülete (alul és felül is van egy), tehát F=452,4+2×113,1=678,6cm2.


Második esetben a négyzetet átlója mentén forgatjuk meg, azaz kapunk két, egymásra tett kúpot. Itt a kúpok magassága a négyzet átlójának fele lesz, míg az alapkör átmérője a négyzet átlója. Az átló pedig a pitagorasz-tétel miatt a négyzet oldalának hosszának gyök kettőszerese, azaz 12×1,4142=16,97 cm.

Így tehát a kúp 16,79/2=8,49 cm magas és az alapkör sugara is ennyi, így térfogata: 1/3×h×r^2×pi, ahol most h=8,49 cm, r=8,49 cm. Így V=1/3×8,49×8,49^2×3,14=639,8 cm3. De ne felejtsük el, ebből kettő van, így a test térfogata valójában 639,8*2=1280 cm3.

A felszínnél viszont figyelni kell, hogy ott csak a kúp palástja számít, mivel a két kúp alapja kitakarja egymást. Ilyenkor az alkalmazandó képlet a kúp palástjának kiszámítására a pi×r×h, jelen esetben mind r, mint h 8,49 cm, így a felszín: 3,14×8,49×8,49=226,44 cm2, de ebből is kettő van tehát a valós felszín: 226,44×2=453 cm2.


Ekkor a százalék már könnyen jön, a térfogatra: %=1280/1357*100=94,33%

Felületre: %=453/452×100=100,2%

2017. ápr. 25. 00:09
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!