Az egyenlő szárú háromszög szára 17 cm, az alapra bocsátott magassága pedig 8 cm. Határozd meg az alapjánál lévő szögének szinuszát, koszinuszát, tangensét, kotangensét! Valaki segítene?
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
Ha behúzod az alaphoz tartozó magasságot, akkor az felezni fogja az alapot és merőleges is lesz rá, tehát olyan derékszögű háromszögünk lesz, ahol a befogók hossza 8 cm és 8,5 cm, erre felírjuk Pitagorasz tételét:
8^2 + 8,5^2 = c^2
64 + 72,25 = c^2
136,25 = c^2
gyök(136,25) = c
A 8,5 cm-es oldallal szemközti Ł szög szögfüggvényértékei a kérdés, tehát
sin(Ł)=8,5/gyök(136,25), ha ennél szebb alakot szeretnénk kapni, írjuk közös gyökjel alá: gyök(72,25/136,25), a törtet bővítsük 4-gyel: gyök(289/545)
cos(Ł)=8/gyök(136,25)=gyök(64/136,25)=gyök(256/545)
tg(Ł)=8,5/8, 2-vel bővítve =17/16
ctg(Ł)=8/8,5=16/17.
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
A háromszög SZÁRA 17 cm, így az alapra bocsátott magasság valóban felezi az egész háromszöget, de ennek a "fél" háromszögnek az átfogója a 17 cm, az egyik befogója 8 cm.
A másik befogót Pitagorasz tétellel kiszámolva: 17^2-8^2=15^2
vagyis a "fél" háromszög másik befogója 15.
A sin, cos, tg, ctg definíciókkal pedig:
sin(alfa)= 8/17
cos(alfa)=15/17
tg(alfa)=8/15
ctg(alfa)=15/8
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!